

Last time

Last time, we learned about the technique of structural induction for lists, and
used it to prove some theorems about functions on lists.

We also learned about tail recursion, and how it can help make code more efficient.
We used accumulators to facilitate the implementation. We also implemented some
useful functions on lists.

Brandon Wu Trees 30 May 2023 2 / 50

Lesson Plan

1 Trees

2 Tree Traversals

3 Structural Induction on Trees

4 Datatypes

5 Type Casting

Brandon Wu Trees 30 May 2023 3 / 50

1 - Trees

Data Structures

In computer science, there are only a few fundamental data structures, from which
everything else pretty much is derived from.
One of them is lists, which we’ve already covered. The other is trees.

Def A binary tree is a data structure of nodes, where each node may have up to
two children that are also binary trees.
They look something like this:

1

2

4 5

3

6

Brandon Wu Trees 30 May 2023 5 / 50

Trees

SML doesn’t have an in-built notion of trees, the same way that it does lists, but we
can define our own. We can use a datatype declaration to achieve this.

Def A datatype declaration is a declaration in SML, which declares a new type.

A datatype declaration for binary trees on integers would look something like this:
datatype tree = Empty | Node of tree * int * tree

Brandon Wu Trees 30 May 2023 6 / 50

Tree Constructors

datatype tree = Empty | Node of tree * int * tree

This datatype declaration does two things. Firstly, it declares a new type, named
tree . Secondly, it provides that type with two constructors, in the same way as
the constructors that we saw earlier for lists.

This declaration says that:
• Empty : tree
• Node (L, x, R) : tree if and only if L : tree, x : int, and R : tree .

In essence, it’s saying that a tree only takes two forms, Empty or Node (L, x, R).
A tree is one of those two things, and no more.

Brandon Wu Trees 30 May 2023 7 / 50

Tree Examples

Let’s see some examples of trees, and how they would be pictured visually1:

Empty : tree

(nothing pictured)

Node(Empty , 150, Empty) : tree

150

1It can be confusing to type out a tree in text, so if you need help, you can refer to this excellent
SML tree converter, which lets you generate SML text for trees from pictures and pictures from SML
text, made by previous head TA Sue Lee.

Brandon Wu Trees 30 May 2023 8 / 50

https://leesue630.github.io/tree-to-sml-converter/
https://leesue630.github.io/tree-to-sml-converter/

Tree Examples

Node(Node(Empty , 1, Empty), 5, Node(Empty , 0, Empty)) : tree

5

1 0

Node(Node(Empty , 1, Empty), 5, Empty) : tree

5

1

Brandon Wu Trees 30 May 2023 9 / 50

Constructors Recursive Problems, Recursive Solutions

The syntax is important to get used to.

Of our two constructors for the tree datatype, only one takes an argument. The
other is Empty , which is called a constant constructor. It requires no arguments in
order to be a value of type tree .

The constructor that takes an argument is Node, which takes in a tuple of type
tree * int * tree . This type uses the tree type we are in the middle of
defining!

This is allowed, and called a recursive type. Datatypes are allowed to be recursive,
in essence saying that the tree type can be built out of other trees, with the Node
constructor.

Brandon Wu Trees 30 May 2023 10 / 50

Tree Functions

We can write functions on trees using pattern matching, in the same way that we
write functions on lists.

For instance, let’s write a function which sums all the nodes of a tree:
fun treesum (Empty : tree) : int = 0

| treesum (Node (L, x, R)) = treesum L + x + treesum R

When writing recursive functions on trees, we need two recursive calls instead of
one for lists!

Brandon Wu Trees 30 May 2023 11 / 50

Getting In-depth

Let’s write a simple function for computing the depth of a tree.
fun max (x : int , y : int) : int =

if x < y then x else y

fun depth (Empty : tree) : int = 0
| depth (Node (L, x, R)) = 1 + max (depth L, depth R)

Check your understanding Why was this function not written by just directly
comparing depth L and depth R?

Brandon Wu Trees 30 May 2023 12 / 50

2 - Tree Traversals

Boilerplate Tree Code

Sometimes, we are interested in converting data between lists and trees.

In particular, we might be interested in quantities such as determining the number
of nodes in a tree. We could, of course, roll our own function to do so:

fun count (Empty : tree) : int = 0
| count (Node (L, x, R)) = count L + 1 + count R

But this is kind of boilerplate code, and we might want to avoid having to write this!

Brandon Wu Trees 30 May 2023 14 / 50

Tree Traversals

We already have a function for counting the number of elements in a list, however.

What if we could turn a tree into a list? We need a function of type
tree -> int list, which defines a kind of traversal.

Def A tree traversal is a particular kind of way to visit the elements in a tree. They
come in three main kinds, preorder, postorder, and inorder.

4

2

1 3

6

5 7

Inorder

1

2

3 4

5

6 7

Preorder

7

3

1 2

6

4 5

Postorder

Brandon Wu Trees 30 May 2023 15 / 50

Kinds of Traversals

4

2

1 3

6

5 7

Inorder
left-root-right

1

2

3 4

5

6 7

Preorder
root-left-right

7

3

1 2

6

4 5

Postorder
left-right-root

There are three primary kinds of tree traversals, which are characterized by the
order in which they choose to visit the left subtree, right subtree, and root. We will
usually be concerned with the first two kinds.
The trees are enumerated according to the order in which they are visited, in each
traversal.

Brandon Wu Trees 30 May 2023 16 / 50

Implementing Tree Traversal Recursive Problems, Recursive Solutions

Tree traversal can be implemented in SML very simply.
fun inord (Empty : tree) : int list = []

| inord (Node (L, x, R)) = (inord L) @ (x :: inord R)

fun preord (Empty : tree) : int list = []
| preord (Node (L, x, R)) = x :: ((preord L) @ (preord R))

Think about how these functions are implemented, with respect to the recursive
leap of faith! For inord , we can be assured that it follows the left-root-right order,
because recursively inord L will visit the entire left subtree in an inorder manner,
and so will inord R. All that remains is to put the pieces together in the right order.

Brandon Wu Trees 30 May 2023 17 / 50

3 - Structural Induction on Trees

Proving Theorems on Trees

Now that we’ve introduced trees, we are still interested in proving mathematical
guarantees on our code!

We will be able to do this for trees in the same flavor as we were able to do for lists.

In the same way that natural numbers are built from other natural numbers, and lists
are made of other lists, trees are made from other trees! This means that they admit
a principle of structural induction.

Brandon Wu Trees 30 May 2023 19 / 50

Structural Induction on Trees Programmatic Thinking is Mathematical Thinking

Def The principle of structural induction on trees is as follows:

Let P be a theorem on values v : tree . We would like to show that, for all
v : tree, P (v) holds.

It suffices to show that:
• P (Empty) holds
• Assuming that P (L) and P (R) hold, for some L, R : tree, show that

P (Node(L, x, R)) holds, for an arbitrary x : int.

Key Fact This means that, when proving a theorem on trees, you get two inductive
hypotheses!

Brandon Wu Trees 30 May 2023 20 / 50

Lists, Trees, and Equivalence, Oh My!

Consider the following few functions:
fun inord (Empty : tree) : int list = []

| inord (Node (L, x, R)) = (inord L) @ (x :: inord R)

fun treeSum (Empty : tree) : int = 0
| treeSum (Node (L, x, R)) = treeSum L + x + treeSum R

fun listSum ([] : int list) : int = 0
| listSum (x::xs) = x + listSum xs

We want to show that both functions treeSum and listSum do essentially the
same thing, when using inord to convert between lists and trees.

Thm. For all T : tree, treeSum T ∼= listSum (inord T)

Brandon Wu Trees 30 May 2023 21 / 50

A List-Tree Equivalence

Thm. For all values T : tree, treeSum T ∼= listSum (inord T)

Lemma 1 For all values L1, L2 : int list,
listSum (L1 @ L2) ∼= listSum L1 + listSum L2
Lemma 2 inord is total
We proceed by structural induction on T : tree .
BC T = Empty
Let’s step the LHS first:

treeSum Empty ∼= 0 (clause 1 of treeSum)

Now the RHS:

listSum (inord Empty) ∼= listSum [] (clause 1 of inord)
∼= 0 (clause 1 of listSum)

Brandon Wu Trees 30 May 2023 22 / 50

A List-Tree Equivalence: Recursive Case

IH1 Assume that, for some L : tree, treeSum L ∼= listSum (inord L).
IH2 Assume that, for some R : tree, treeSum R ∼= listSum (inord R).

IS Case: T = Node(L, x, R), for some x : int. Let’s show that
treeSum (Node (L, x, R)) ∼= listSum (inord (Node (L, x, R))).

LHS:

treeSum (Node (L, x, R)) ∼= treeSum L + x + treeSum R
(clause 2 of treeSum)

Well, it’s not actually clear how to proceed. Let’s start from the other side.

Brandon Wu Trees 30 May 2023 23 / 50

A List-Tree Equivalence: Recursive Case

RHS:

listSum (inord (Node (L, x, R)))
∼= listSum ((inord L) @ (x :: inord R)) (clause 2 of inord)

Are we stuck here, too? Well, remember we have a lemma! Let’s inspect the form of
it:

Lemma 1 For all values L1, L2 : int list,
listSum (L1 @ L2) ∼= listSum L1 + listSum L2
It almost fits!

Brandon Wu Trees 30 May 2023 24 / 50

An Almost-Applicable Equivalence

We can almost use the lemma here. The lemma only applies to expressions of the
form listSum (L1 @ L2), where L1 and L2 are values.

This is almost what we need! We have
listSum ((inord L) @ (x :: inord R)). We can see that this looks like the
expression listSum (e1 @ e2), where e1 is inord L, and e2 is x :: inord R.

The only way to proceed is to somehow show that inord L and x :: inord R
are values. This would follow quickly if we knew that inord was total.

Oh wait, that’s one of the lemmas we were given.

Brandon Wu Trees 30 May 2023 25 / 50

Stepping through Theorem Values

This is a general phenomenon I will term stepping through theorem values.

In general, you might have a theorem you know, but which only applies to values.

For instance, it might be that for all values v : int, id v ∼= v.

You have to be very careful! This is not the same thing as saying that id e ∼= e, for
an arbitrary expression e!2

If I wanted to use this theorem to say that id (length []) ∼= length [], I need
to show that length [] eventually reduces to a value, i.e. is valuable.

The easiest way to do this is to show that length is total. We use totality as a tool
to get at valuability, so that we can apply theorems that step through values.

2Of course, this is not to say that that is a false statement. The difference is that when you are
making a step, you have to have the correct justification. Although you can think about it and
conclude that id e ∼= e for an arbitrary expression, you would have to prove it here, since it doesn’t
follow directly from the theorem.

Brandon Wu Trees 30 May 2023 26 / 50

Totality Citations

This begins a chapter in your life known as totality citations, which are justifications
you make in a proof when stepping through theorem values, where you cite a
function’s totality to get at an expression’s valuability.

It is very important to remember the reasoning behind this! If you mindlessly cite
totality, you will lose points. The ultimate goal is to use totality citations to conclude
an expression’s valuability, to use a theorem which relies on a particular expression
being valuable.

totality citation valuability of e
ability to use theorem
which
relies on e being valuable

Brandon Wu Trees 30 May 2023 27 / 50

A List-Tree Equivalence: Recursive Case

Back to the proof.

RHS:

listSum (inord (Node (L, x, R)))
∼= listSum ((inord L) @ (x :: inord R)) (clause 2 of inord)
∼= listSum (inord L) + listSum (x :: inord R) (lemma 1, lemma 2)
∼= listSum (inord L) + x + listSum (inord R)

(clause 2 of listSum , lemma 2)
∼= treeSum L + x + treeSum R (inductive hypothesis, twice)

Now we match the left-hand side, so we can conclude the equivalence.

So by the principal of structural induction on trees, we have proven that for all
values T : tree, treeSum T ∼= listSum (inord T).

Brandon Wu Trees 30 May 2023 28 / 50

4 - Datatypes

Back to Lists

Now that we’ve seen trees, let’s return to lists for a bit.

We’ve seen that we can extract the first element of a list easily by using pattern
matching. It’s not as clear what to do, however, to obtain the last element in the list!

Let’s write a recursive last function to achieve this.
fun last ([] : int list) : int = (* ??? *)

We find that we immediately encounter a problem, however.

Brandon Wu Trees 30 May 2023 30 / 50

Slide to the Left

Before we even write the recursive case, we have to write the case for the empty
list.

What is the last element in the empty list? We want to return an int, so it could be
0, or 1, or something arbitrary.

The bigger issue is that it simply doesn’t make sense to return an integer for this
function. We want to return something else, to distinguish the cases of "found 0"
and "found nothing".

Brandon Wu Trees 30 May 2023 31 / 50

An Optional Type

There are quite often times where we want to write a function, where some inputs
do not have a well-defined answer.

We’ve seen this with the div and fact functions, where 0 and negative numbers
cause an exception to be raised, and infinite looping, respectively.

Sometimes, we don’t want such things to happen, however. We would prefer to
return a value, which is a more predictable and safe behavior.

To facilitate this, we have the option type constructor.

Brandon Wu Trees 30 May 2023 32 / 50

Type Constructors

A type constructor is something which makes a type out of other types.

We were brief about this previously, but that is exactly what list is! Out of the
types int, bool, and int list, we can make the types int list, bool list,
and int list list .

Similarly, we will be able to construct the types int option , string option , and
int list option .

Brandon Wu Trees 30 May 2023 33 / 50

The option Type Constructor Types Guide Structure

Def For any type t, there is a type t option , which describes a value that is
possibly a value of type t.

The type t option has the following constructors:
• NONE, which is a constant constructor of no arguments
• SOME : t -> t option , which is a constructor that takes a single argument
of type t.

So for instance, here are some examples of options:
• SOME 5 : int option
• SOME [] : int list option
• NONE : int option
• NONE : bool option

Brandon Wu Trees 30 May 2023 34 / 50

Get Thee To A NONE-ery

Let’s rewrite last with this knowledge!

fun last ([] : int list) : int option = NONE
| last [x] = SOME x
| last (x::xs) = last xs

We could have raised an exception, but this behavior gives more agency to the
caller of the function, in case they want to do something when the list has no output
value.

Brandon Wu Trees 30 May 2023 35 / 50

Datatypes

So far, we’ve seen a few examples of type which have different variants, or kinds of
constructors that make up the values of the type.

Lists, for instance, can be [] or x::xs, trees can be Empty or Node(L, x, R),
and options can be NONE or SOME x.

These are all known as variant types, or sum types, and can be defined using the
datatype keyword! They define all the forms that values of a type can take, and no
more.

datatype int_option = NONE | SOME of int

datatype int_list = [] | :: of int * int list

Brandon Wu Trees 30 May 2023 36 / 50

Framing the Problem

Defining types that fit the shape of the problem is one of the strongest aspects of a
functional programming language. These types are known as algebraic datatypes.

For instance, suppose we are interested in an ordering function on integers, which
has type int * int -> order . What should we define the type of order to be?

There are three possibilities. The first is less than the second, they are equal, or the
first is greater than the second. bool will not suffice here!

Brandon Wu Trees 30 May 2023 37 / 50

The order type

We could use the description of their relationship as the output value. We can use a
type alias to alias the name order to be the same as the name string .

Then, we define our compare function:

type order = string

fun compare (x : int , y : int) : order =
if x < y then

"less"
else if x = y then

"equal"
else

"greater"

Brandon Wu Trees 30 May 2023 38 / 50

A Fragile Approach

This approach is needlessly fragile, however. What does the code look like for a
consumer of this function?

case compare (x, y) of
"LESS" => (* code for the less case *)

| "EQUAL" => (* code for the equal case *)
| "GREATER" => (* code for the greater case *)
| _ => (* shouldn ’t be possible ??? *)

When casing on the result of compare , the compiler doesn’t know that any case
other than "LESS", "EQUAL", and "GREATER" is impossible! This necessitates a
redundant extra case.

What’s another issue with the above code?

Brandon Wu Trees 30 May 2023 39 / 50

A Fragile Approach

The point is that, although it is possible to have order be the same as string , it
comes with a great deal of flaws.

Programming isn’t about the possibility of the solution, it’s about finding the best
solution. It’s an inherently linguistic process, and we’re interested in having good
grammatical structure.

We can use datatype declarations to solve this problem in a better way.

Brandon Wu Trees 30 May 2023 40 / 50

The order datatype

Let’s define our own datatype that fully captures the cases that we are interested
in.

datatype order = LESS | EQUAL | GREATER

fun compare (x : int , y : int) : order =
if x < y then

LESS
else if x = y then

EQUAL
else

GREATER

Brandon Wu Trees 30 May 2023 41 / 50

Communication, Better Types Guide Structure

Now, downstream consumers of this function can write the following code:

case compare (x, y) of
LESS => (* code for the less case *)

| EQUAL => (* code for the equal case *)
| GREATER => (* code for the greater case *)

There’s no need to have an extra redundant case, and now the compiler will warn if
you misspell one of the variants.

This leads to much more polished, streamlined code! Remember the mantra, Types
Guide Structure. We use the power of types to structure our solution to a problem.

Brandon Wu Trees 30 May 2023 42 / 50

5 - Type Casting

A People Problem

Problems come in all shapes and sizes. The great strength of algebraic datatypes is
in being able to craft a type representation that exactly describes your problem.

For instance, suppose we have a class of people. Some people are employed, some
people are students, and some people are unemployed.

We might be interested in a couple of things:
• the person’s name
• the person’s paycheck, if employed, and tuition, if a student
• the company an employed person works for
• the amount of courses a student is taking
• days since last employed, if unemployed (if ever)
• title of last job, if unemployed (if ever)

Brandon Wu Trees 30 May 2023 44 / 50

Class Description

In service of this, we might define a following datatype which describes a person:
datatype class = Employed | Student | Unemployed

and the following type which describes the above information:
type person_info =

string (* name *)
* real (* positive paycheck , if employed. negative

tuition , if a student , and 0 if unemployed *)
* string option (* company name , if employed , o.w. NONE *)
* int option (* # of courses , if student , o.w. NONE *)
* int option (* days since employment , o.w. NONE *)
* string option (* last job if unemployed , o.w. NONE *)

Brandon Wu Trees 30 May 2023 45 / 50

Excessive Invariants

We would then say that a person was a tuple of a class and person_info .

This is very clearly disgusting. There are floating invariants everywhere!

We have to make sure that people who are employed don’t have a number of
courses, or a number of days unemployed, or a negative paycheck!

In addition, we might be interested in applying a totally necessary tuition increase.
Let’s write that function:

fun newTuition (_, tuition , _, _, _, _) = tuition * 1.04

Except now, this function could possibly run on someone who is just employed or
unemployed. Something really bad could happen because this function was written
too generically, because the types were all wrong!

Brandon Wu Trees 30 May 2023 46 / 50

A Better Class System

Can we do better?

Let’s try isolating the parts of each person that are relevant, into the class type.

type class =
Employed of real * string

(* paycheck and company name *)
| Student of real * int

(* tuition and # of courses *)
| Unemployed of (int * string) option

(* days unemployed and last employer *)

type person = string * class

Brandon Wu Trees 30 May 2023 47 / 50

A Better Class System

We see that every person has a name, so string can be factored out. We can
isolate things like company name and number of courses to specific cases, and
eliminate the real from unemployed people entirely.

For unemployed people who have had previous jobs, we notice that days
unemployed and last employer should only be set if both are set, so we fold them
both into a single tuple, and make it an option , if the person was never employed.

Brandon Wu Trees 30 May 2023 48 / 50

Type Casting Types Guide Structure

This is a phenomenon I call type casting. This is not anything to do with the typical
definition of type-casting, involving free conversion of values of one type to
another, which does not exist in SML.

Def Similarly to how a blacksmith casts metals to fit a mold of what they need,
type casting is the art of designing types in a way that they fit the specification of
the problem at hand.

An imperative programmer tries to fit square pegs into round holes. A functional
programmer can make a peg to fit any hole that they need.

Brandon Wu Trees 30 May 2023 49 / 50

Thank you!

	Trees
	Tree Traversals
	Structural Induction on Trees
	Datatypes
	Type Casting

