


Lesson Plan

1 Deconstructing Data

2 Structural Induction

3 Tail Recursion

4 More List Functions

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 2 / 47



Last time

In the last lecture, we learned about the relationship between recursion and
induction.

We learned about some more fundamental constructs to the Standard ML language,
such case and let expressions.

We then used these concepts to write an implementation of the pow function using
naive recursion, as well as a faster variant fast_pow , using repeated squaring to do
less work.

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 3 / 47



1 - Deconstructing Data



What’s in a List?

In the last lecture, we saw a brief treatment of lists and case expressions, which
allow us to deconstruct lists, or dispatch on the kind of data that is present within a
list.

We had an idea about how to think about lists, which is worth repeating now:
Mantra Lists can be either [] or x::xs, and nothing more.

But what does that really mean? It means that doing anything that involves
examining a list involves at least two cases:

case L of
[] => (* ... *)

| x::xs => (* ... *)

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 5 / 47



What’s in a List?

We can view this another way, equivalently:

Mantra Lists can be either empty or not, and nothing more.

But this perspective actually is significantly less useful for us. There is a slight
distinction here.

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 6 / 47



A List Problem

Suppose we are interested in writing the following list function:

take : int * int list -> int list
REQUIRES: n >= 0
ENSURES: take (n, L) evaluates to the first n elements of L, in order. If there
are not enough elements, then L should just be however many elements are left.

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 7 / 47



Some List Helpers

Recall our isEmpty function from before:
fun isEmpty (L : int list) : bool =

case L of
[] => true

| _ => false

We could also define a hd function, which takes off the first element of a list:

hd : int list -> int
REQUIRES: L is nonempty
ENSURES: hd L evaluates to the first element of L

fun hd (x::xs : int list) : int = x
| hd [] = raise Fail "impossible"

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 8 / 47



Some List Helpers

Furthermore, suppose we had a tl function, which takes every element but the first
of a list:

tl : int list -> int list
REQUIRES: L is nonempty
ENSURES: tl L evaluates to L, excluding the first element

fun tl (x::xs : int list) : int list = xs
| tl [] = raise Fail "impossible"

We’ll use these to write our take function.

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 9 / 47



take ing an L

fun take (n : int , L : int list) : int list =
if isEmpty L orelse n = 0 then

[]
else

let
val x = hd L
val xs = tl L

in
x :: take (n - 1, xs)

end

What’s wrong here?

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 10 / 47



take ing an L

We see in this implementation of take that we are too reliant upon preconditions.

hd and tl are functions which can possibly raise exceptions, so we have to be very
careful about using them! In this case, we know that it is safe because of the
isEmpty call, but this can quickly lead us to error if we are not careful.

Moreover, it’s wasteful! We pattern match once to get out a value of type bool,
about whether or not the list is empty or not, and then we pattern match once more
to get the head and tail out. This is duplicated work!

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 11 / 47



Schrodinger’s List

The issue is that we are adhering too much to the mantra that "a list is either empty
or not empty".

This is a true statement, but it’s strictly less powerful than the statement that a list
is [] or x::xs. The former is a statement that only gives two kinds of information –
true or false. The second one sums up exactly what data is present in a list.

This is another way of saying that pattern matching is strictly more powerful than
if expressions.

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 12 / 47



Parse, Don’t Validate

This general idea is an instance of a popular idea in functional programming called
"parse, don’t validate".

Def We say that a function p : t -> bool, for some type t, is a validator. It
ascertains some property P of the input, and returns a boolean.
The idea is to avoid simply validating input by only producing a single value of truth
because, as we saw with the hd and tl example, this doesn’t stop us from maybe
having to query that property many times down the road, producing wasted effort,
and uglier code.

Def We say that a function f : t -> t2 is, in a sense, a parser1, as opposed to
a validator p, if it produces output data such that the property p validates is present
in the type of t2.

1This idea comes from this excellent article. I should also disclaim that this is a nontraditional usage
of the word "parse", so while you can apply this thinking, be careful in using this wording, as people
might be confused what you mean.

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 13 / 47

https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/


take Two

Let’s try rewriting take again, using this logic.
fun take (n : int , L : int list) : int list =

case (n, L) of
(0, _) => []

| (_, []) => []
| (_, x::xs) => x :: take (n - 1, xs)

This code is much cleaner. It avoids needing to use the hd and tl functions, which
are possibly error-producing, and acts as a parser, because instead of using an
intermediary bool as the signal for whether L is nonempty, in the nonempty case, it
produces a value of type int * int list .

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 14 / 47



Types, Not Preconditions Types Guide Structure

The basic idea is that a value of type int * int list is more useful than a
boolean, because it itself is proof that the list is nonempty. A list which contains an
int cannot be empty, and having access to the elements that are inside the list is
strictly more powerful/useful.

This is why pattern matching is more powerful than conditionals. It lets you see
what values really are, rather than simply querying them. It actually produces the
goods, as opposed to just making claims.

Viewed another way, "parse, don’t validate" is about lifting preconditions to types
instead of checks, wherever possible.

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 15 / 47



Booleans are Weak

For example, let’s take an example of some code that exhibits significant branching
behavior:

if isEmpty L then
(* 1 *)

else if List.length L >= 2 then
(* 2 *)

else if List.length L = 1 then
if hd L = 2 then

(* 3 *)
else

(* 4 *)

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 16 / 47



Pattern Matching is Overpowered

case L of
[] => (* 1 *)

| x::y::xs => (* 2 *)
| 2::xs => (* 3 *)
| x::xs => (* 4 *)

Much better.

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 17 / 47



2 - Structural Induction



Induction, another way

The induction principle on natural numbers lets us prove things about numbers by
viewing them as built up from other numbers. In essence, we are expanding our
store of numbers for which we know the theorem to be true.
By way of analogy, we might imagine a bucket.

Figure 1: The "Bucket of Mathematical Truth"2

This bucket is meant to contain all the things that we know satisfy our
theorem-to-prove.

2Patent pending.
Brandon Wu Structural Induction and Tail Recursion 25 May 2023 19 / 47



Induction, another way

By default, the bucket is empty. Our first action as theorem provers is to throw our
base case into the bucket. In the case of induction on the natural numbers, this is
zero.

The bucket still has a ways to go, however! To prove our statement for the next
number, 1, we will apply our inductive step.

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 20 / 47



Induction, another way

This tells us that, from P (0), we can achieve P (1).

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 21 / 47



Induction, another way

By analogy, you should be able to convince yourself that eventually, we can throw
every single natural number into the bucket.

This means that, for any natural number n, we can eventually, in finitely many
applications of this logic, prove P (n).

This is the "bucket" view of mathematical induction.

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 22 / 47



Induction Is Not Just For Cookware

In the last lecture, we learned about the list type constructor, which allows us to
talk about types like int list and string list.

Lists are not just good for storing data, but they admit a simple structure which
allows us to easily prove things about lists. For instance, consider the following
function:

fun length ([] : int list) : int = 0
| length (x::xs) = 1 + length xs

How might we convince ourselves that the length function is total?

Recall that a function f : t1 -> t2 is total if, for all values v : t1, there exists a
v’ : t2 such that f v ↪→ v’. In other words, the function reduces to a value for
each valuable input.

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 23 / 47



An Informal Proof

Intuitively, it seems like we could reason about the function like so:

Clearly, the function length must terminate, because when given any list, it must
be either empty or have a first element. If it’s the first case, then we terminate,
because length will return 0. If not, then we will recurse and enter a shorter case,
which is always guaranteed to enter a smaller case, which will eventually reach [].

This is what is called a paragraph proof.

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 24 / 47



An Informal Proof

We would prefer to see formal proofs of correctness! Intuitive reasoning and
colloquial wording can mask errors, and precision is necessary when reasoning
about complex programs.

Similarly to how we will avoid "dot dot dot" reasoning when proving claims on the
natural numbers, by using the technique of mathematical induction, we will employ
the technique of structural induction when proving claims about lists.

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 25 / 47



Structural Induction on Lists Programmatic Thinking is Mathematical Thinking

Def The principle of structural induction on lists is as follows:

Let P be a theorem on values v : t list, for some type t. We would like to show
that, for all values v : t list, P (v) holds.

It suffices to show that:
• P ([]) holds
• Assuming that P (xs) holds, for some xs : int list, show that P (x::xs)

holds, for an arbitrary x : int.

We call this proof by structural induction.

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 26 / 47



Totally Total

Thm. length is total
We proceed by structural induction on L : int list.
BC L = []

length [] ∼= 0 (def. of length)

IH Case: L = xs, for some xs : int list. Assume that length xs ↪→ v.
IS Case: L = x::xs, for some x : int. Let’s show that length (x::xs) ↪→ v.

length (x::xs) =⇒ 1 + length xs (clause 2 of length)
=⇒∗ 1 + v (inductive hypothesis)
=⇒ v’ (totality of +)

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 27 / 47



Buckets of Fun

The principle of structural induction on lists looks very similar to that of
mathematical induction on the natural numbers!
It’s key to remember that the principle is just the same, in terms of what is "really
happening" with the proof. We are showing that, through finite applications of the
same inductive step, we can prove the claim for any list, from the empty list.
To visualize this, our bucket for structural induction would start with just the empty
list in it:

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 28 / 47



Buckets of Fun Recursive Problems, Recursive Solutions

Upon the first application of the inductive step, we would then throw in x::[], for
any x : int. Our bucket would then contain the empty list, along with every
singleton list.

Repeated application of this technique will eventually produce every single list of
integers.

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 29 / 47



A Picture of Induction

. . .

1::2::[]

. . .

2::1::[]

. . .

1::2::[]

. . .

2::2::[]

. . .

1::3::[]

. . .

2::3::[]

. . . 3::[] 2::[] 1::[] . . .

[]

Every node represents a particular value at which our theorem needs to hold, and
the edges depict applications of the inductive step x::xs, at different values of x.

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 30 / 47



Quantity is Quality

One thing to be wary of is to be sure you have correct quantification in your
inductive proof.

A surefire way to lose points on a homework is to write the following statement:
"Assume that, for all xs : int list, P (xs) holds"
Why? This is assuming the theorem!

Technically, the structural induction principle for lists looks like:

P ([]) ∧ (∀xs, x : [P (xs) =⇒ P (x::xs)]) =⇒ (∀L : [P (L)])3

We do not assume that P (xs) holds for all xs, we show that for all xs, if P (xs)
holds, then we also have P (x::xs)!

It is best to be safe and explicit in your proofs by writing the case out explicitly, as
well as what variables you are introducing for it.

3Where x, xs, L range over values such that x : int, xs : int list , and L : int list
Brandon Wu Structural Induction and Tail Recursion 25 May 2023 31 / 47



A Template for Induction on Lists

We proceed by structural induction on L : int list .

BC Case: L = []

⟨ proof that P ([]) holds ⟩

IH Case: L = xs. Assume that the theorem holds for xs.
IS Case: L = x::xs. We would like to show that P (x::xs) holds.
⟨ proof of P (x::xs), under hypothesis that P (xs) holds ⟩

Thus, by the principle of structural induction, the theorem holds for all L.

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 32 / 47



3 - Tail Recursion



Reference Implementations and Correctness

So now, after proving that length is total, we might be a little more assured about
its behavior.

What do we say about its correctness, though? Can we prove that length is
correct?

Usually, when trying to prove a function correct, we will start with a single, correct
implementation (called the reference implementation), then attempt to prove that
they are equivalent. We will take length as our reference implementation, on faith.

We can try it out on a few values, to see what happens (click me!)

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 34 / 47

https://asciinema.org/a/587202


A lengthy Trace

Woah! Trying out length on a very long list ends up producing an extremely large
trace. What gives?

Recall that the body of the length function is written as 1 + length xs.

Because SML is an eagerly evaluated language, this means that both 1 and
length xs must be independently evaluated to values, before they can be
summed, in that order.

This means that we end up on a very large rabbit hole of computing length L on
successively smaller lists L, before we ever get to add the first 1!

We say that length is not tail recursive.

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 35 / 47



Tail Recursion

For recursive functions like length , we can write a version that, instead of making a
recursive call and then doing some work with it, first does some work and then
computes the answer by making a recursive call.

This sounds like a small distinction, but it makes a big difference! Such functions
never have to remember what they have to do next after the recursive call,
meaning they use less memory.

Def A function is tail recursive if it makes a singular recursive call as the last thing
that it does, in the recursive case.

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 36 / 47



Tail Recursive or Not?

Let’s look at some functions we already implemented:
fun length ([] : int list) : int = 0

| length (x::xs) = 1 + length xs

We already saw this was not tail recursive.
fun fact (0 : int) : int = 1

| fact n = n * fact (n - 1)

Similarly, this one ends up not being tail recursive.
fun isEmpty ([] : int list) : bool = true

| isEmpty (x :: xs) = false

Let’s call this one "vacuously" tail recursive.
Most of the functions we’ve seen so far are not tail recursive! Let’s write one.

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 37 / 47



A Better length

Let’s write a tail-recursive version of length !

We will use an idea which will come up multiple times this semester, of an
accumulator.

Def An accumulator is an additional argument to a function, which is meant to
store the final answer, carrying it forward into future recursive calls.

In this case, we will make length take in an int as an argument.

fun tlength ([] : int list , acc : int) : int = acc
| tlength (x::xs, acc) = tlength (xs, 1 + acc)

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 38 / 47



A Better length

fun tlength ([] : int list , acc : int) : int = acc
| tlength (x::xs, acc) = tlength (xs, 1 + acc)

We see that in the recursive case, we first compute the sum of 1 and acc, and then
make a tail-recursive call.

Then, we can define our original length function as simply:
fun length (L : int list) : int = tlength (L, 0)

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 39 / 47



tlength in Action

We can see our new length function put to the test!

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 40 / 47

https://asciinema.org/a/587210


4 - More List Functions



The @ function

We’ve seen that we can use :: to add a single element to the beginning of a list, but
what about multiple?

For concatenating two lists together, we have the @4 function, which can be defined
as follows:

infix @

fun ([] : int list) @ (R : int list) : int list = R
| (x::xs) @ R = x :: (xs @ R)

4Pronounced "append".
Brandon Wu Structural Induction and Tail Recursion 25 May 2023 42 / 47



The rev function

Sometimes we’re interested in reversing a list.

The rev5 function can be implemented as follows:
fun rev ([] : int list) : int list = []

| rev (x::xs) = rev xs @ [x]

5Pronounced "rev".
Brandon Wu Structural Induction and Tail Recursion 25 May 2023 43 / 47



rev is Not Tail Recursive

We will take both of these as our reference implementations for the @ and rev
functions.

There’s a catch, though. While relatively simple to define, rev leaves something to
be desired, because it makes a non tail-recursive call to itself!

fun rev ([] : int list) : int list = []
| rev (x::xs) = rev xs @ [x]

Looking at the recursive call for rev, it makes a call to the @ function. What’s the
time complexity of @?

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 44 / 47



The Cons of @

infix @

fun ([] : int list) @ (R : int list) : int list = R
| (x::xs) @ R = x :: (xs @ R)

From the definition of @, we see that it never inspects the second argument that it is
given, namely the right list.

However, it deconstructs the first list by one element each time, and then adds it to
the resulting recursive call. This ends up being a linear amount of operations, in the
length of the first list.

This means that any operation like L @ [x] is very costly, because it is spending
length L operations to add to a singleton list! In general, we call L @ [x] an
anti-pattern that should hopefully be avoided, if possible.

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 45 / 47



Back to rev

The rev function uses this very anti-pattern. Can we avoid it, using an accumulator
and tail recursion?

We will use an accumulator of type int list to achieve this:
fun trev ([] : int list , acc : int list) : int list = acc

| trev (x::xs , acc) = trev (xs, x :: acc)

fun rev (L : int list) : int list = trev (L, [])

This trev function runs in less space, and as we will see in two lectures, less time!

Brandon Wu Structural Induction and Tail Recursion 25 May 2023 46 / 47



Thank you!


	Deconstructing Data
	Structural Induction
	Tail Recursion
	More List Functions

