

Lesson Plan

1 Staging

2 Cost Analysis of HOFs

3 HOFs and Trees

4 Simplifying Programming

5 Case Study: Staging (Bonus)

Brandon Wu Combinators and Staging 15 June 2023 2 / 49

Last time

Last time, we went over higher-order functions, which are functions which can
take in functions as input and return other functions.

We learned that curried functions take in multiple arguments at separate times, by
taking them in one-by-one, and returning functions which take in the rest.

We also learned about the menagerie of HOFs that we will use in this class, being
map, filter , o, foldl , foldr .

Brandon Wu Combinators and Staging 15 June 2023 3 / 49

1 - Staging

Currying

What is the advantage of currying?

Before, we talked about how we can use currying to define hierarchies of functions.

We can instantiate functions we’d ordinarily have to write recursive function
definitions for, by using HOFs like map as templates, and producing expressions
such as map Int.toString .

Currying is then important because each curried argument represents a
specialization of a function!

• foldr - general template for accumulating in a list
• foldr (op+) - general template for summing elements in a list, plus a value
• foldr (op+) 0 - function for finding sum of a list

Brandon Wu Combinators and Staging 15 June 2023 5 / 49

Trivial Totality

A fun fact is that syntactically sugared curried functions are trivially total.1

Consider the definition of a function like map:

fun map f [] = []
| map f (x::xs) = f x :: map f xs

Is map total? I claim – yes!

But now, we also know that map f [1, 2, 3] should be extensionally equivalent
to [f 1, f 2, f 3], and f might not be a total function. What gives?

Indeed, if we evaluate map (fn x => x div 0) [1, 2, 3], we get a raised
exception Div. What gives?

1An even more fun fact is that there were three alliterations in that sentence.
Brandon Wu Combinators and Staging 15 June 2023 6 / 49

Trivial Totality

Key Fact We said that map was total – this does not necessarily say anything about
the totality of map f! These are two different functions.

Consider the definition of map, which can be desugared to the following:
val map = fn f => fn [] => (* ... *) | x::xs => (* ... *)

It is easy to see that for any function value f : t1 -> t2, map f immediately
evaluates to a lambda expression, which takes in a list and evaluates to either case
of map.

This is an important conceptual distinction to keep in your mind. So we say that a
curried function like map is "trivially total".

Brandon Wu Combinators and Staging 15 June 2023 7 / 49

Trivial Totality?

A question remains then - is every value t1 -> t2 -> t3 total?
The answer: no! Just because map and friends are, doesn’t mean all such values of
curried type are. For instance, take the following example:

fun loop () = loop ()

fun f x =
let

val x = loop ()
in

fn y => 0
end

This function does not immediately return a lambda expression upon being given a
value. It actually immediately evaluates loop (), an infinite loop.

Brandon Wu Combinators and Staging 15 June 2023 8 / 49

A Carnegie Mellon Example

Suppose that you are building a booth.2

It’s the day of move-on, and you still haven’t finished painting the wall boards. Your
good friend stays behind to get them painted, and you refuse to move the rest of
the booth to Midway until they’re done.

That is silly.

2For readers unfamiliar with Carnegie Mellon traditions, this is a yearly festival where
undergraduate students become construction workers and build small houses as decorations for
alumni. I’m not joking.

Brandon Wu Combinators and Staging 15 June 2023 9 / 49

The Logistics of Booth Building

When building a booth, painting the walls is necessary, but comes much after other
steps, like setting up the floorboards, constructing the walls, and moving the wood
to Midway in the first place!

The point: It’s absurd to wait on something completely unrelated, when you could
do the work now with what you have!

Brandon Wu Combinators and Staging 15 June 2023 10 / 49

Staging

We refer to this as staging.

Def We use the term staging to describe the act of deliberately placing
computations at certain points with respect to receiving curried arguments .

So instead of saving all computations for when all the curried arguments are
received, we can instead move some computations to when only the necessary
arguments have been received.

Suppose we have the following function:
val f = fn x => fn y => x + y

Can we move the expression x + y any earlier in the curried function? The answer
is no, because x + y depends on both arguments!

Brandon Wu Combinators and Staging 15 June 2023 11 / 49

A Code Example

This comes up all the time!

Consider the following artificial code example:
fun mystery x y =

let
val res = horrible_computation x

in
res + y

end

horrible_computation takes 3 years to evaluate.

Brandon Wu Combinators and Staging 15 June 2023 12 / 49

A Code Example

fun mystery x y =
let

val res = horrible_computation x
in

res + y
end

3 years is kind of a long time. Suppose we’re interested in evaluating the following:
val res1 = mystery 2 4
val res2 = mystery 1 2
val res3 = mystery 2 5

This code takes 9 years in total, to run. But it doesn’t need to!

Brandon Wu Combinators and Staging 15 June 2023 13 / 49

Speed Gains

Something we notice about mystery is that horrible_computation doesn’t
actually depend on y.

So we can rewrite it as:
fun mystery2 x =

let
val res = horrible_computation x

in
fn y => res + y

end

Now instead of returning a lambda which accepts y, computes the horrible
computation, and then returns, we first compute the horrible computation!

Brandon Wu Combinators and Staging 15 June 2023 14 / 49

Speed Gains

This lets us write:
val f = mystery2 2
val g = mystery2 1
val res1 = f 4
val res2 = g 2
val res3 = f 5

We can’t avoid the cost of computing mystery2 twice, but 6 years isn’t so long.

Brandon Wu Combinators and Staging 15 June 2023 15 / 49

Benefits of Staging

Usually, the order in which computations happen doesn’t matter, due to extensional
equivalence. We might care about things which go beyond simple extensional
equivalence however, such as expensive computations, or things that break
extensional equivalence, such as side effects or mutability.

Later this semester, we will see how side effects can make correct knowledge of
staging even more essential.

Brandon Wu Combinators and Staging 15 June 2023 16 / 49

2 - Cost Analysis of HOFs

Cost Analysis of HOFs

We’ve written some higher-order functions at this point, and we’re fairly convinced
of their correctness, but what can we say about their efficiency?

Take map for example.

fun map (f : ’a -> ’b) ([] : ’a list) : ’b list = []
| map f (x::xs) = f x :: map f xs

From first glance, it looks like the recurrence is a standard recursion on a list, and
thus comes out to a bound of O(n). When analyzing the recursive case, a question
comes to mind, however – what is the work of f?

Brandon Wu Combinators and Staging 15 June 2023 18 / 49

The Cost of Code Programmatic Thinking is Mathematical Thinking

Because HOFs like map are code which is parameterized on other code, the run-time
cost of functions like map is also parameterized by the cost of the input function!

This is different than before HOFs, when we only had to deal with being passed
values that didn’t have any notion of cost associated with them – they just were.

In this case, we would say that the cost of map is O(n) in the number of calls to f,
but we can’t really say anything better than that.

Brandon Wu Combinators and Staging 15 June 2023 19 / 49

3 - HOFs and Trees

Mapping and Folding Types Guide Structure

We’ve so far seen mapping and folding on lists. These aren’t notions that are
specific to lists, however.3

Suppose we have a polymorphic tree type, as we’ve defined before, such as:
datatype ’a tree = Empty | Node of ’a tree * ’a * ’a tree

We are interested in a map function which transforms every element of the tree, and
a fold function which combines the elements of the tree in a particular order. How
can we define these functions?

3Indeed, "almost every" datatype admits a concept of mapping and folding. Proper treatment of
this is outside the scope of this course, however.

Brandon Wu Combinators and Staging 15 June 2023 21 / 49

Tree Mapping

The type signature for treemap will look similar to map:

treemap : (’a -> ’b) -> ’a tree -> ’b tree
REQUIRES: f is total
ENSURES: treemap f T evaluates to T with f called on each element

fun treemap f Empty = Empty
| treemap f (Node (L, x, R)) =

Node (treemap f L, f x, treemap f R)

Brandon Wu Combinators and Staging 15 June 2023 22 / 49

Tree Folding

What about folding? We need to first pick a particular traversal order. Let’s go with
inorder traversal, which is the more intuitive "left-to-right" traversal.

treefoldl : (’a * ’b -> ’b) -> ’b -> ’a tree -> ’b
REQUIRES: true
ENSURES: treefold f z T ∼= foldl f z (inord T)

We see that the types of foldl and treefoldl look very similar.

Brandon Wu Combinators and Staging 15 June 2023 23 / 49

Tree Folding

Now, let’s implement it.

fun treefoldl f z Empty = z
| treefoldl f z (Node (L, x, R)) =

let
val left_folded = treefoldl f z L

in
treefoldl f (f (x, left_folded)) R

end

Brandon Wu Combinators and Staging 15 June 2023 24 / 49

Tree Folding: Example

Let’s see tree folding in action (click me!)

Brandon Wu Combinators and Staging 15 June 2023 25 / 49

https://asciinema.org/a/vb4tp7vH1aFMNHKabkex1TsJH

Tree Search

Using HOFs, we can also encapsulate the design pattern for a generic function
which performs a search on trees.

To facilitate this, similarly to how sort took in a generic comparison function, our
search function will take in an arbitrary predicate on elements, which returns a
boolean on whether the element is what we are meant to search for.

search : (’a -> bool) -> ’a tree -> ’a option
REQUIRES: p is total
ENSURES: search p T evaluates to the first element in T that satisfies p, in
inorder traversal

Brandon Wu Combinators and Staging 15 June 2023 26 / 49

Tree Search Recursive Problems, Recursive Solutions

fun search p Empty = NONE
| search p (Node (L, x, R)) =

case search p L of
NONE =>

if p x then SOME x
else search p R

| SOME res => SOME res

This search function follows the same sort of logic as the original inord function
we defined – it obeys the left-root-right ordering.

Brandon Wu Combinators and Staging 15 June 2023 27 / 49

4 - Simplifying Programming

Towards Simpler Code

We’ve talked a lot about using HOFs to simplify our language. We obtain expressive
functions from generalized templates of program logic, which is an improvement
that is almost linguistic in nature.

It’s not quite, since we’re really writing code to write other code. But there are other
useful applications of HOFs, which allows us to write literally simpler code.

For instance, suppose we had a very nested function application. It would look
something like:

foo (bar (qux (baz x)))

Brandon Wu Combinators and Staging 15 June 2023 29 / 49

The Pipe Operator

Such a nested expression is rather displeasing to the eye, as well as being generally
annoying to deal with, due to the parentheses. It also requires being read "inside
out", since baz comes after foo, but is evaluated first!

To that end, we can define the |>4 operator, which allows us to reverse the order of
function application. It is defined as:

infix |>

fun x |> f = f x

Thus, we could rewrite the first example as:
x |> baz |> qux |> bar |> foo

4Pronounced "pipe".
Brandon Wu Combinators and Staging 15 June 2023 30 / 49

The Pipe Operator

This might seem weird to look at at first, but this is extremely useful for producing
legible code, that reads like simple instructions.

For instance, take the following recipe:
• Heat oven to 400
• Insert tray of mozzarella sticks
• Wait two hours
• Remove charred remains

Brandon Wu Combinators and Staging 15 June 2023 31 / 49

The Pipe Operator

Well, let’s see what happens if we try to codify these instructions as actual SML
code.

For instance, take the following recipe:
heat oven 400
|> insert trayOfMozzarellaSticks
|> wait 2
|> remove

Brandon Wu Combinators and Staging 15 June 2023 32 / 49

A Student Problem

We can think of the pipe operator as stringing together operations, in the same way
that we might construct a pipe out of components with compatible ends.
Let’s take a look at another problem which might benefit from usage of the pipe
operator. Suppose we would like to write:

findStudentGrade : (string * string) -> string -> int
REQUIRES: true
ENSURES: findStudentGrade (student , assignment) file looks up the
grade of student on assignment assigment in the grades file file

And then, suppose we have the following helpers:
• readFile : string -> string , which reads in the contents of a file
• parseGrades : string -> grades , reads a string as a grade sheet
• lookup : (string * string) -> grades -> int, which tries to look up

a student’s grade on a given assignment
Brandon Wu Combinators and Staging 15 June 2023 33 / 49

A Pipeable Problem?

It looks like we can just straightforwardly use |>!

fun findStudentGrade (student , assignment) grades_file =
grades_file
|> readFile
|> parseGrades
|> lookup (student , assignment)

Except, that might not actually be true. The pipe operator works because each of
those operations can be applied as a function. But what if some of the functions we
want to pipe are fallible? In other words, they return t option , for some type t?

Brandon Wu Combinators and Staging 15 June 2023 34 / 49

Whatever Can Go Wrong...

We see that our helpers defined previously have a host of problems that might
cause them to want to return option types!

• readFile : string -> string option , because the file might not exist
• parseGrades : string -> grades option , because the grades might

not be in the correct format to be parsed
• lookup : (string * string) -> grades -> int, because the student

might not exist

Let’s rewrite the code to accommodate this.

Brandon Wu Combinators and Staging 15 June 2023 35 / 49

Reframed with Options

So let’s try doing this example again, except now all our functions return options.

fun findStudentGrade (student , assignment) grades_file =
case readFile grades_file of

NONE => NONE
| SOME file_content =>

(case parseGrades file_content of
NONE => NONE

| SOME grades =>
(case lookup (student , assignment) grades of

NONE => NONE
| SOME grade => SOME grade))

This is disgusting.

Brandon Wu Combinators and Staging 15 June 2023 36 / 49

An Excess of Casing

In the previous example, we had to insert a case expression every single time that
we wanted to unpack the result of a step. On some level, this is expected, since we
otherwise have no way of dispatching on what exactly was returned, but the
redundancy is in the NONE case.

When SOME is returned, we proceed as normal, but in every single case where we
receive NONE, we just return NONE . This is boilerplate logic, because it just bloats
the code, and doesn’t add anything substantive to the interesting behavior of the
function.

Fortunately, option is something called a monad.

Def A monad is a particular kind of type constructor that supports some
operations that obey certain mathematical laws.

Brandon Wu Combinators and Staging 15 June 2023 37 / 49

Enter the Monad Types Guide Structure

It’s not actually super important what a monad is, but the main idea is that we can
write a single function, bind :

fun bind (x : ’a option) (f : ’a -> ’b option) =
case x of

NONE => NONE
| SOME res => f res

This kind of looks like the boilerplate logic around each one of our earlier steps!

What this function does is take a function which is supposed to operate on a
non-optional value, which might fail. It then passes an optional value into it by
handling the NONE case explicitly, as we did earlier. This takes care of the casing for
us, so that we don’t have to!

Brandon Wu Combinators and Staging 15 June 2023 38 / 49

Piping with bind

Now, we can write:
fun findStudentGrade (student , assignment) grades_file =

bind (readFile grades_file) (fn contents =>
bind (parseGrades contents) (fn grades =>
lookup (student , assignment) grades))

Now, much more readable!

Brandon Wu Combinators and Staging 15 June 2023 39 / 49

Infix bind

Some enthusiasts also enjoy defining bind as an infix operator.
Traditionally, this is named >>=.5

They define:
infix >>=

fun x >>= f = bind (x, f)

to get:
fun findStudentGrade (student , assignment) grades_file =

readFile grades_file >>= (fn contents =>
parseGrades contents >>= (fn grades =>
lookup (student , assignment)))

5This is big in the Haskell community.
Brandon Wu Combinators and Staging 15 June 2023 40 / 49

The Linguistics of Functional Programming

Using operators like >>= and |>, which are really just higher-order functions, we
can achieve vastly more readable code, which leverages simple principles to
simplify program logic that would otherwise bloat a program.

It seems like a little, but code readability is really important when maintaining a
codebase! We posited on the first day that functional programming is a refinement
on our ability to communicate, and this is a concrete example of how small language
features can provide almost linguistic benefits.

Brandon Wu Combinators and Staging 15 June 2023 41 / 49

5 - Case Study: Staging (Bonus)

Benefits of Staging

Let’s look at a concrete instance of a problem that could be staged, for performance
benefits.

Consider a function nth_largest , which has the following specification:

nth_largest : int list -> int -> int
REQUIRES: i >= 0
ENSURES: nth_largest L i evaluates to the ith largest element in L

Brandon Wu Combinators and Staging 15 June 2023 43 / 49

A Naive Approach

Here’s a simple way that we might implement nth_largest . Assume that we have
the sort function that we defined earlier.

fun nth_largest L i =
let

val sorted = sort (Int.compare , L)
in

List.nth (L, i)
end

where List.nth is the function which gets the nth element of a list.

Simple enough!

Brandon Wu Combinators and Staging 15 June 2023 44 / 49

Cost Analysis

But wait, what’s the complexity of this function? We know that our previous work
bound for sorting was O(n log n), when we implemented merge sort, and the
standard library’s List.nth function is O(i), where i is the index that we are trying
to access.6

So then if we ran nth_largest L i on varying values of i, and we did it k times,
we would incur k · n log n in cost!

This is primarily because on every call to nth_largest , we sort the list. This is
massively wasted effort! Can we do better?

6This is because List.nth just pops off the first i elements, until it reaches the ith one. There’s
no magic.

Brandon Wu Combinators and Staging 15 June 2023 45 / 49

Doing Just Fine

We can do better.

We notice that there is no data dependency between sorting the list and the second
argument, i. This means that the computation of sort (Int.compare , L) can
be moved up!

fun nth_largest L =
let

val sorted = sort (Int.compare , L)
in

fn i => List.nth (sorted , i)
end

Brandon Wu Combinators and Staging 15 June 2023 46 / 49

A Staged Experience

Now, instead of calling nth_largest L i a bunch of times, we can first call
nth_largest L, and obtain a staged version of nth_largest , which is particular
to the list L. We can then query it as many times as we like, with only a linear cost
each time.

val staged_nth_largest = nth_largest L (* O(n log n) *)

(* each of these are O(n) *)
val first_largest = staged_nth_largest 0
val second_largest = staged_nth_largest 1
val third_largest = staged_nth_largest 2

Brandon Wu Combinators and Staging 15 June 2023 47 / 49

The Effect

Does it matter, at the end of the day? By sorting the list at all, we still incur a
O(n log n) cost, so maybe we haven’t actually saved much.

If we were only planning on doing a constant number of queries, it won’t actually
asymptotically matter, in the long run.

This particular situation isn’t one that will be asymptotically improved, but it’s still
better. Avoiding a potentially large amount of duplicate sorts is still a big deal. It’s
important to be mindful of the computations you’re doing, and see opportunities for
improvement.

Brandon Wu Combinators and Staging 15 June 2023 48 / 49

Thank you!

	Staging
	Cost Analysis of HOFs
	HOFs and Trees
	Simplifying Programming
	Case Study: Staging (Bonus)

