


Lesson Plan

1 Fundamental Data Structures

2 Cost Graphs

3 Sequence Functions

4 And Then Sum

Brandon Wu Sequences 20 July 2023 2 / 57



1 - Fundamental Data Structures



Fundamental Data Structures

We previously claimed that, in computer science, there are only a few fundamental
data structures, from which everything else pretty much is derived from.

One of these items is the list . The other is the tree . Many things, such as priority
queues, tries, queues, and sets can be implemented with just these two ideas.

The third is the array, which we have given substantially less treatment of, so far in
this course. That changes today.

Brandon Wu Sequences 20 July 2023 4 / 57



Arrays

Def Arrays are a kind of mutable data structure that have a fixed number of
elements, all of the same type. These elements support indexing, which allows
access of any given element by its position in the array, in constant time.

Arrays are usually associated with lower-level programming languages, meaning
that they are mutable by default – indices of the array can be rewritten and
assigned, which will change future accesses.

Constant time access is cool. We can skip the mutability.

Brandon Wu Sequences 20 July 2023 5 / 57



From Arrays to Sequences Types Guide Structure

Instead of arrays, we will discuss a similar type of data structures called sequences.

Def Sequences1 are a kind of immutable data structure that have a fixed size of
elements, all of the same type. These elements support indexing, which allows
access of any given element by its position in the array, in constant time.

The key is that sequences are not mutable, however! Changing an given element of
a sequence entails producing a new sequence entirely. This is how we will be able
to take advantage of the various benefits of arrays, without falling for the trap of
mutability.

Note Other than the fact that sequences are immutable, you can think of them as
being implemented as arrays.

1Worth noting that as far as I can tell, "sequences" to refer to essentially immutable arrays is a CMU
thing. Other people don’t use this terminology.

Brandon Wu Sequences 20 July 2023 6 / 57



The Part Where I Tell You About The Inner Implementation of Sequences

But how are sequences implemented?

The answer: It’s a secret.

No, actually. For our purposes, we are taking advantage of the module system, and
using a library which implements sequences as an abstract type, which prevents us
from knowing anything about the way that it is implemented under the hood. This
means we cannot pattern-match, nor can we interact with sequences in any way
which is not prescribed to us by the sequences interface.

The signature of the Seq module is available on the next few slides (and online, at
this link):

Brandon Wu Sequences 20 July 2023 7 / 57

http://www.cs.cmu.edu/~15150/resources/libraries/sequence.pdf
http://www.cs.cmu.edu/~15150/resources/libraries/sequence.pdf


The SEQUENCE Signature

signature SEQUENCE =
sig

type ’a t
type ’a seq = ’a t (* abstract *)

exception Range of string

(* Constructing a Sequence *)

val empty : unit -> ’a seq
val singleton : ’a -> ’a seq
val tabulate : (int -> ’a ) -> int -> ’a seq
val fromList : ’a list -> ’a seq

(* ... *)

Brandon Wu Sequences 20 July 2023 8 / 57



The SEQUENCE Signature

(* ... *)
(* Deconstructing a Sequence *)

val nth : ’a seq -> int -> ’a
val null : ’a seq -> bool
val length : ’a seq -> int
val toList : ’a seq -> ’a list
val toString : (’a -> string) -> ’a seq -> string
val equal : (’a * ’a -> bool) -> ’a seq * ’a seq -> bool

(* Simple Transformations *)

val rev : ’a seq -> ’a seq
val append : ’a seq * ’a seq -> ’a seq
val flatten : ’a seq seq -> ’a seq
val cons : ’a -> ’a seq -> ’a seq

(* ... *)

Brandon Wu Sequences 20 July 2023 9 / 57



The SEQUENCE Signature

(* ... *)
(* Combinators and Higher - Order Functions *)

val filter : (’a -> bool) -> ’a seq -> ’a seq
val map : (’a -> ’b) -> ’a seq -> ’b seq
val reduce : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a
val reduce1 : (’a * ’a -> ’a) -> ’a seq -> ’a
val mapreduce : (’a -> ’b) -> ’b -> (’b * ’b -> ’b) -> ’a seq -> ’b
val zip : (’a seq * ’b seq) -> (’a * ’b) seq
val zipWith : (’a * ’b -> ’c) -> ’a seq * ’b seq -> ’c seq

(* Indexing -Related Functions *)
val enum : ’a seq -> (int * ’a) seq
val mapIdx : (int * ’a -> ’b) -> ’a seq -> ’b seq
val update : (’a seq * (int * ’a)) -> ’a seq
val inject : ’a seq * (int * ’a) seq -> ’a seq

val subseq : ’a seq -> int * int -> ’a seq
val take : ’a seq -> int -> ’a seq
val drop : ’a seq -> int -> ’a seq
val split : ’a seq -> int -> ’a seq * ’a seq

(* Sorting and Searching *)

val sort : (’a * ’a -> order) -> ’a seq -> ’a seq
val merge : (’a * ’a -> order) -> ’a seq * ’a seq -> ’a seq
val search : (’a * ’a -> order) -> ’a -> ’a seq -> int option
(* ... *)

end

Brandon Wu Sequences 20 July 2023 10 / 57



Taking It In

OK, that’s a lot. Moreover, there isn’t any description on what each function does!2

If you glance at the names of each function, however, it doesn’t look terribly
different than the list library (though a little better equipped). What gives?

Sequences don’t offer us anything that can’t be done with lists, in terms of their
structure. We could very well be using lists instead. The difference will be in each
function’s cost, as sequences admit a different cost model.

Key In particular, sequences are very parallelizable.

For instance, we can execute Seq.map f within constant time, for a constant
function f.

2There is at the online reference, though.
Brandon Wu Sequences 20 July 2023 11 / 57



Advantages of Sequences

We mentioned previously that sequences will admit constant time access to each
element, whereas in a list you must perform O(i) work to access the ith element.

We can implement the nth function for lists as such:
fun nth ([], 0) = raise Subscript

| nth (x::_, 0) = x
| nth (x::xs, n) = nth (xs, n - 1)

Other advantages of sequences are that length can be computed in constant time,
and that they are parallel-friendly, meaning that bulk operations (like map, fold,
and filter) can be done without having to always pay a linear cost up front.

Brandon Wu Sequences 20 July 2023 12 / 57



Disadvantages of Sequences

For all those advantages, however, we have some disadvantages that come as a
consequence. The most prominent one, from a programming standpoint, is that you
cannot pattern match upon a sequence. This means that something as simple as
the following, with lists:

case L of
[] => (* 1 *)

| x::xs => (* 2 *)

Brandon Wu Sequences 20 July 2023 13 / 57



Disadvantages of Sequences

...requires the following, for a sequence S:
case Seq.length S of

0 => (* 1 *)
| _ =>

let
val (x, xs) = (Seq.nth S 0, Seq.drop S 1)

in
(* 2 *)

end

Tradition dictates that I mention: this is disgusting.3

3Time permitting, at the end of this lecture we can discuss a nicer way of doing this. The point
stands.

Brandon Wu Sequences 20 July 2023 14 / 57



Disadvantages of Sequences

The other disadvantage of sequences is the same as its primary benefit: sequences
are designed with parallelism in mind. This means that bulk operations, as in,
operations which require dealing with a fixed number of elements all at once, are
very easy, but sequential operations are slow.

This is most salient through the fact that cons is expensive. For sequences,
consing an element onto the sequence takes linear time in the length of the
sequence, as opposed to constant time for lists.

Key Fact The root cause for this is that when you cons an element onto a
sequence, you must create a brand new sequence, meaning you must copy over
everything that was in the old sequence! This is an easy linear cost.4

4Usually, talk of things like "copying" and "memory" are beneath us. But this is a case where it
actually matters, because it shows up in our cost bound.

Brandon Wu Sequences 20 July 2023 15 / 57



Sequence Basics

When discussing sequences, we will usually textually represent them using the
mathematical notation ⟨x1, x2, ..., xn⟩, for the sequence with elements x1, ..., xn at
each index.

For instance, we might write that Seq.map f ⟨x1, x2, ...xn⟩ has the cost of
maxxi∈S(W (f xi)), meaning the maximum cost over any given application of f to an
element of the sequence, and evaluates to the sequence ⟨f x1, f x2, ..., f xn⟩.

Before we can do a deeper dive into the cost of sequences, we need to come up
with a conceptual model of how to think about the cost of sequence functions.

To that end, we need to discuss cost graphs.

Brandon Wu Sequences 20 July 2023 16 / 57



2 - Cost Graphs



The Cost of Sequences

We use cost graphs to visually reason about the cost of a given operation of a
sequence. Although we don’t know specifically the underlying implementation of
sequences, cost graphs still give us a way of reasoning about their cost.

Def A cost graph is a graph which indicates the cost of performing a certain
function, but with visual indications for when parallelism can be achieved.

This is exactly the same as the idea of task dependency graphs, from the previous
lecture on asymptotic analysis! We will boil in a few more sequence-specific things,
however.

Brandon Wu Sequences 20 July 2023 18 / 57



Fundamentals of Cost Graphs Programmatic Thinking is Mathematical Thinking

[graph 1]

[graph 2]

sequential composition
of cost graphs

[graph 1] [graph 2]

parallel composition of
cost graphs

f

node denoting
computation of f

Cost graphs are inductively defined by these three constructs.

Cost graphs always run from top to bottom, so while we can view them as directed,
we will omit the arrows for brevity. Every graph also has a source and sink, which
denote the starting and ending positions of executing that cost graph.

Brandon Wu Sequences 20 July 2023 19 / 57



Sources and Sinks

For the sequential case, the source and sink are just the source and sink of graphs 1
and 2, respectively.

For the parallel case, the source is the originating dot, which then forks to perform
graph 1 and graph 2 in parallel, before joining back together.

The single node is itself both source and sink.

Brandon Wu Sequences 20 July 2023 20 / 57



More on Cost Graphs

Cost graphs can be mixed and matched
and put together! This means that
although forking has a source and sink
which are just before and after the two
graphs in between, it can be sequentially
merged with other graphs.

So for instance, we might say that the
cost graph of the computation
(1 + 2) * (3 + 4) has cost graph:

+ +

*

This comes from forking to perform each addition in parallel (in constant work and
span), before joining to then perform the multiplication, also in constant work and
span. Note that each purple node here has a constant cost.

Brandon Wu Sequences 20 July 2023 21 / 57



Computation Nodes and Cost Nodes

Once we know the cost of a particular
computation node, we might also replace
it with a work/span node (or cost node),
like in the resulting graph:

Now, we can easily see that the work of
this graph is just a constant O(1), and the
span is also.

W : O(1)
S: O(1)

W : O(1)
S: O(1)

W : O(1)
S: O(1)

Brandon Wu Sequences 20 July 2023 22 / 57



More on Cost Graphs

As before, the work of the entire cost graph is simply
the work of each node, summed up. The span of a
cost graph is the greatest cost among paths from the
source to the sink.

Actually, we don’t necessarily need labeled cost
nodes, as in the last slide, as we can rederive it from
just the parallel and sequential composition cases. For
instance, we could rederive this node:

W : O(n)
S: O(n)

as the cost graph on the right:

[O(n) many more nodes]

Brandon Wu Sequences 20 July 2023 23 / 57



More on Cost Graphs

We will also use the following shorthand for many simultaneously forking paths:

(graph 1) [graph 2] [graph n− 1]· · · [graph n]

This could be desugared as just many parallel composed graphs on top of each
other, but nobody has time for that.
When all of the subgraphs are themselves constant cost nodes, this ends up being
the same as the cost node:

W : O(n)
S: O(1)

Brandon Wu Sequences 20 July 2023 24 / 57



Cost Graphs, Concluded

That’s pretty much all you need to know about cost graphs.

It’s worth noting that all of the ideas present in this section are strictly conceptually
interesting, and the actual encoding doesn’t matter. You will not be tested on your
ability to faithfully render a cost graph exactly, so long as you are approximately
correct. Don’t worry too much about the smaller details.

Now, we can move on to discussion of sequence functions in general.

Brandon Wu Sequences 20 July 2023 25 / 57



3 - Sequence Functions



Sequence Functions

We don’t have nearly enough time to go through every sequence function, so we
won’t. Fortunately, many functions within the sequence library are themselves
derivable in terms of others, meaning that we only need to discuss a few
fundamental functions to be able to understand the whole library.

For our purposes, the interesting functions to note will be Seq.tabulate ,
Seq.map, Seq.filter , and Seq.reduce . We will also have some brief notes on
some other sequence functions, and their cost.

Note We will occasionally make reference to values as though we are inside of the
Seq structure. That means we would ordinarily write Seq.map or ’a Seq.seq, but
for brevity I will write map and ’a seq.

Brandon Wu Sequences 20 July 2023 27 / 57



Sequence tabulate

tabulate : (int -> ’a) -> int -> ’a seq
REQUIRES: For all 0 ≤ i < n, f i is valuable.
ENSURES: tabulate f n evaluates to ⟨f 0, f 1, ..., f (n - 1)⟩

This function actually exists for lists too, but it’s rarely used, and not very
parallelizable.

This specification means that, for instance, Seq.tabulate (fn x => x) n is
equivalent to the sequence ⟨0, 1, ..., n - 1⟩.

Brandon Wu Sequences 20 July 2023 28 / 57



Sequence tabulate : Cost

Cost graph:

f 0 f 1 f (n-2)· · · f (n-1)

Recall that this cost graph indicates that each of the calls to f can be parallelized!
This means that, for instance, given a constant time function f,
Seq.tabulate f n is O(n) work and O(1) span.
This is much improved over the O(n) span for the list equivalent. The main
difference is that for lists, the list must be made by consing on elements repeatedly.
For sequences, the entire sequence can be created at once, with each part
independent, without any sequential operations at all.

Brandon Wu Sequences 20 July 2023 29 / 57



Sequence nth

As promised before, one of the most important functions for sequences will be nth,
which allows constant time access to any given element of the sequence.

nth : ’a seq -> int -> ’a
REQUIRES: true
ENSURES: nth S i evaluates to the ith element of S. If i is negative or greater
than or equal to length S, then Range is raised.

The cost graph just looks like:

It has exactly one edge, denoting that there is only one op-
eration, and it runs in O(1) work and span.

Brandon Wu Sequences 20 July 2023 30 / 57



Sequence length

Similarly, sequences promise a length function in O(1) work and span as well. This is
achieved by just storing the length of the sequence within the sequence itself.

length : ’a seq -> int
REQUIRES: true
ENSURES: length ⟨x0, x1, ..., xn−1⟩ ∼= n

The cost graph looks the same as nth:

Brandon Wu Sequences 20 July 2023 31 / 57



Sequence map

map : (’a -> ’b) -> ’a seq -> ’b seq
REQUIRES: f xi is valuable for all elements xi in the input sequence
ENSURES: map f ⟨x0, x1, ..., xn−1⟩ ∼= ⟨f x0, f x1, ..., f xn−1⟩

map will end up having an identical cost profile to tabulate , but this ends up being
because we don’t need special case it in terms of our definitions, because we can
derive it in terms of the functions we’ve already seen!

fun map f S = tabulate (fn i => f (nth S i)) S

Namely, tabulate and nth.

Brandon Wu Sequences 20 July 2023 32 / 57



Sequence map: Cost

How do we analyze the cost of map? Well, intuitively it should be the same, but what
do we say about the cost graph?
The f function in the expression tabulate (fn i => f (nth S i)) S is just
the lambda fn i => f (nth S i), which is the sequential combination of the
call to nth, and the call to f. This means that our cost graph actually looks like:5

f 0 f 1 · · · f (n-2) f (n-1)

5Actually, I have simplified notation a bit. There should technically be another edge above each
purple node, but I have just contracted a constant number of edges into one.

Brandon Wu Sequences 20 July 2023 33 / 57



Sequence map: Cost

This produces the same cost, because a constant addition to each path does not
alter the asymptotic complexity of the function.

The key conceptual understanding here is that the way to derive this cost graph, is
simply to compose the cost graphs of nth and the original f, and then substitute it
into the cost graph of tabulate !

These kinds of nested computations are common with sequences, and it’s
important to be able to accurately derive their cost.

Brandon Wu Sequences 20 July 2023 34 / 57



A Fold for Sequences

The most fundamental operator we would like to analyze is that of folding on
sequences.

We are familiar with left folds and right folds for lists, and for sequences it turns out
we are going to have a natural equivalent. There will be some differences, however,
to take advantage of the parallel nature of sequences.

The standard specification of foldl is that foldl f acc [x1, ..., xn] is
equivalent to f (xn, ..., f (x2, f (x1, acc)) ... ). foldl achieves this
by literally computing that expression in sequence6, but this is a naturally O(n) work
and span operation! We can’t possibly do any better than sequentially march along,
because there’s a giant data dependency, as each computation depends on its inner
consistuents.

6It’s funny how "in sequence" ends up being the worst case for sequences. It’s even funnier how a
data structure specifically built for parallelism ended up named after the word "sequential".

Brandon Wu Sequences 20 July 2023 35 / 57



A Fold for Sequences

But how will we go about producing this fold for sequences, in a way that takes
advantage of parallelism? We can’t avoid this data dependency.

Indeed, we aren’t going to be able to avoid the fact that each outer f depends on
the inner ones, but we can change the problem statement slightly.

By analogy, let’s consider an operation like addition. If we were summing all of the
elements of a list, must this take O(n) span?

The answer: No, it does not!

Brandon Wu Sequences 20 July 2023 36 / 57



An Additive Example

Suppose we were summing a list of elements, and that list is
[1, 2, 3, 4, 5, 6, 7, 8]. There’s a closed form, but pretend we weren’t
actually privy to the contents of the list.
The naive way to do this is to march from left to right and compute the sum:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8

= 3 + 3 + 4 + 5 + 6 + 7 + 8

= 6 + 4 + 5 + 6 + 7 + 8

= 10 + 5 + 6 + 7 + 8

= 15 + 6 + 7 + 8

= 21 + 7 + 8

= 28 + 8

= 36

How exhausting.
Brandon Wu Sequences 20 July 2023 37 / 57



An Additive Example Programmatic Thinking is Mathematical Thinking

But, let’s give the perspective a switch. What if, instead, we computed the sum of
the following:

((1 + 2) + (3 + 4)) + ((5 + 6) + (7 + 8))

It’s the same, but now everything is different. The different components of the
addition can be done in parallel.

((1 + 2) + (3 + 4)) + ((5 + 6) + (7 + 8))

= (3 + 7) + (11 + 15)

= 10 + 26

= 36

Brandon Wu Sequences 20 July 2023 38 / 57



An Additive Example

Now three steps, when previously it took seven. All because of a simple
reparenthesization.

What gives? The key distinction is that, for lists, the trace on the previous slide is
still the best you can do, in parallel, because lists are sequential. With sequences,
we are going to exploit its parallel properties to have the freedom to
"reparenthesize" in this manner.

Brandon Wu Sequences 20 July 2023 39 / 57



A Subtractive Example

Is this always possible, though? Consider if we were simply folding from left to right
with the subtraction operator, on a smaller list of [1, 2, 3, 4].
Then, foldl should produce:

foldl (op -) 0 [1, 2, 3, 4]
∼= foldl (op -) (0 - 1) [2, 3, 4]
∼= foldl (op -) (∼1) [2, 3, 4]
∼= foldl (op -) (∼1 - 2) [3, 4]
∼= foldl (op -) (∼3) [3, 4]
∼= foldl (op -) (∼3 - 3) [4]
∼= foldl (op -) (∼6) [4]
∼= foldl (op -) (∼6 - 4) []
∼= foldl (op -) (∼10) []
∼=∼10

Brandon Wu Sequences 20 July 2023 40 / 57



A Subtractive Example

Let’s try the same trick:

(1− 2)− (3− 4)

= (−1)− (−1)

= 0

...What just happened?

Key Addition is not the same as subtraction.

More particularly, addition is different than subtraction via a mathematical property
that allows it to employ this "reparenthesization" and still be equivalent. This
property is associativity.

Brandon Wu Sequences 20 July 2023 41 / 57



Associativity

Def We say a binary operation ⊙ of type t * t -> t is associative if, for all
x, y, z of type t, we have that x ⊙ (y ⊙ z) is equivalent to (x ⊙ y) ⊙ z.

You can also think of it as, in a long chain of binary operations, if it is associative,
then you can place parentheses wherever you want, and reassociate the operations,
and still get the same thing out. They must remain in the same order, however.

Addition is thus associative, since it doesn’t matter which side of the addition you
do first. For subtraction, it does, so we can’t use this tactic.

We will thus restrict our attention solely to those operations which are associative,
for the purpose of our folding function. Since it’s not really a "fold" in the same
sense as we saw for lists, we will call it another name: reduce.

Brandon Wu Sequences 20 July 2023 42 / 57



Sequence reduce

Here’s our spec for reduce :

reduce : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a
REQUIRES: g is both total and associative
ENSURES: reduce g z S is equivalent to foldr g z L, where L is the
corresponding list to the sequence S

It’s implemented spiritually in the same way as the algoritm we just described, for
fast computation of the sum of a list. We pair up the elements if we can, and apply
the binary operation to them in parallel. The base case of z is also placed at the
very end, at the right of the sequence.

We then repeat this process until we get a final value.

Brandon Wu Sequences 20 July 2023 43 / 57



Sequence reduce : Cost Recursive Problems, Recursive Solutions

What’s our cost graph look like? It actually looks similar to the computation trace:

g g g g
g g

· · · · · ·

· · ·

· · ·

g g

g

(lots of stuff here)

Brandon Wu Sequences 20 July 2023 44 / 57



Sequence reduce : Cost

The cost graph might look scary, but it’s really just the same idea as the
divide-and-conquer algorithm we saw for addition! All we do is divide into our pairs,
and then recursively continue doing that until completion.

This means that the height of the cost graph is O(log n), in the length of the
sequence, and the number of nodes is linear. Beware that the actual work and span
of the reduce call might be worse, though, depending on if g is constant time or
not.

For a constant function g (like addition), however, we have that reduce g z S is
O(n) work and O(log n) span. Not bad!

Brandon Wu Sequences 20 July 2023 45 / 57



Sequence filter

We love filtering, so we wanted one for sequences, too:

filter : (’a -> bool) -> ’a seq -> ’a seq
REQUIRES: p is total
ENSURES: filter p S is equivalent to the same sequence as S, but with all
the elements that do not satisfy p removed

How is it implemented, though? Naively, we might think that we could just apply the
function p to each element, and then fold over the sequence to collect the results.

Folding is a sequential concept, though! This would incur an O(n) span bound,
because we couldn’t do it in parallel. We can do better than that.

Brandon Wu Sequences 20 July 2023 46 / 57



Sequence filter : Cost

We actually can’t draw a cost graph here, because the implementation of filter is
kind of subtle. The cost of filter is, given a constant-time predicate p, O(n) work and
O(log n) span.

You can think of it as being something like the following pseudocode:
• map each element to NONE or SOME depending on if it satisfies p
• reduce the sequence by combining the remaining elements into

sub-sequences, joining them with Seq.append

This won’t have the right work bound, but it’s the right intuition for why the span is
logarithmic. Further treatment is reserved for 15-210.

Brandon Wu Sequences 20 July 2023 47 / 57



More Sequence Functions

There are many more sequence functions, but we will not give a rigorous treatment
of them here. Their descriptions and cost bounds can be found at the 150
sequences reference.

These are the fundamental ones that will get us going with programming with
sequences. We will find that many problems having to do with dealing with bulk
data become much more performant due to our use of sequences.

Brandon Wu Sequences 20 July 2023 48 / 57

http://www.cs.cmu.edu/~15150/resources/libraries/sequence.pdf
http://www.cs.cmu.edu/~15150/resources/libraries/sequence.pdf


4 - And Then Sum



Sum Kind of Problem

For a simple example on sequences, see the problem of summing all the entries in a
2D matrix, modelled by two sequences.

sumMatrix : int seq seq -> int
REQUIRES: true
ENSURES: sumMatrix S evaluates to the sum of all the elements in the 2D
matrix S

We can write some terse code as follows:
fun sum S = Seq.reduce (op+) 0 S

fun sumMatrix S =
Seq.map sum S
|> sum

Brandon Wu Sequences 20 July 2023 50 / 57



Sum Kind of Problem

This comprises of the logic to take a 2D matrix and sum across its rows using the
faster reduce :0 1 2 3

4 5 6 7
8 9 10 11

 7−→∗

 (0 + 1) + (2 + 3)
(4 + 5) + (6 + 7)
(8 + 9) + (10 + 11)

 7−→∗

 6
12
28



...and then to sum across each row’s sum, using the same method:

(6 + 12) + 28

Brandon Wu Sequences 20 July 2023 51 / 57



Sum Kind of Cost Graph

The cost graph looks like so:

sum R1 sum R2 sum Rm−2 sum Rm−1

sum

. . .

Here, we have m calls in the middle, for an m× n matrix.

What’s the cost?

Brandon Wu Sequences 20 July 2023 52 / 57



Sum Kind of Cost Analysis

Well, not all of the sums in this graph are made equal. In particular, each of the inner
calls to sum Ri are on the ith row, which is a sequence n elements long, so that is a
cost of O(n) work and O(log n) span.

Then, we know that the sequence passed to the final sum must be of the same
length, which is the number of rows m. So that is a cost of O(m) work and O(logm)
span.

Brandon Wu Sequences 20 July 2023 53 / 57



Sum Kind of Cost Graph, Again

So now we can get our cost graph, but with cost nodes instead of computation
nodes:

W : O(n)
S: O(log n)

W : O(n)
S: O(log n)

W : O(n)
S: O(log n)

W : O(n)
S: O(log n)

W : O(m)
S: O(logm)

. . .

From this, it should be clear that the work (area) of the graph is m ∗O(n) +O(m), or
O(nm), and the span (longest path) is O(log n+ logm).

Brandon Wu Sequences 20 July 2023 54 / 57



Sum Kind of Cost Graph, Again

So we finally simplify, and obtain the cost node which is simply our final result.

W : O(nm)
S: O(log n+ logm)

That’s all there is to it! We could then iterate this process, and substitute this cost
node somewhere else as well, if this sumMatrix function were to be involved in
another computation somewhere.

Brandon Wu Sequences 20 July 2023 55 / 57



Conclusions

Sequences are useful for a couple of reasons. They:
• are an excellent use of abstraction to not think of lower-level details of a given

implementation
• allow us to solve problems that would normally be solved by arrays, without

needing to compromise our immutability
• allow us to think about span in a more nuanced way, with parallel-friendly

operations

They aren’t as nice to work with as lists, which are the bread and butter of a
functional programmer’s toolkit, but they are still quite usable and quite convenient.

Brandon Wu Sequences 20 July 2023 56 / 57



Thank you!


	Fundamental Data Structures
	Cost Graphs
	Sequence Functions
	And Then Sum

