

Lesson Plan

1 Text Validation

2 Regular Expressions

3 Finite-State Automata

4 Matching Regular Expressions

5 Proving Correctness

Brandon Wu Regular Expressions 03 July 2023 2 / 61

1 - Text Validation

Reading Emails

Suppose that we are interested in the problem of validating user input.

In this particular circumstance, assume that we are taking input that is supposed to
look like an email. We expect an input which looks something like

⟨name⟩@⟨website⟩.⟨extension⟩

validateEmail : string -> bool
REQUIRES: true
ENSURES: validateEmail s =⇒∗ true iff s is a valid email address

Brandon Wu Regular Expressions 03 July 2023 4 / 61

Reading Emails Recursive Problems, Recursive Solutions

We note that this problem can be solved by noticing what characters fall into each
section of the email. We know that @ and . need to show up, but there are different
requirements for the name, website, and extension!

For simplicity, we assume that:
• an ⟨extension⟩ can only be "org" or "com"
• a ⟨website⟩ must be fully alphanumeric
• a ⟨name⟩ must be fully alphanumeric, plus underscores and periods

To facilitate our implementation of validateEmail , we will define a series of
consumer functions, which simply serve to consume each of the constituent email
parts from the front of a list of characters.

Brandon Wu Regular Expressions 03 July 2023 5 / 61

Consuming Input

consumeName : char list -> char list
REQUIRES: true
ENSURES: consumeName cs evaluates to the suffix of cs caused by removing
all characters that could be in a ⟨name⟩

consumeWebsite : char list -> char list
REQUIRES: true
ENSURES: consumeWebsite cs evaluates to the suffix of cs caused by
removing all characters that could be in a ⟨website⟩

Brandon Wu Regular Expressions 03 July 2023 6 / 61

Consuming Input

fun consumeName [] = []
| consumeName (c::cs) =

if Char.isAlphaNum c then
consumeName cs

else
case c of

#"." => consumeName cs
| #"_" => consumeName cs
| _ => c::cs

fun consumeWebsite [] = []
| consumeWebsite (c::cs) =

if Char.isAlphaNum c then
consumeWebsite cs

else
c::cs

Brandon Wu Regular Expressions 03 July 2023 7 / 61

Validating Emails

fun validateEmail s =
case consumeName (String.explode s) of

#"@"::cs =>
(case consumeWebsite cs of

#"."::#"o"::#"r"::#"g"::_ => true
| #"."::#"c"::#"o"::#"m"::_ => true
| _ => false
)

| _ => false

Sounds good, right?

Brandon Wu Regular Expressions 03 July 2023 8 / 61

Validating Emails

No, actually. There’s a bug with our code:
fun validateEmail s =

case validateName (String.explode s) of
#"@"::cs =>

(case validateWebsite cs of
[#".", #"o", #"r", #"g"] => true

| [#".", #"c", #"o", #"m"] => true
| _ => false
)

| _ => false

We need to make sure that the extension is the last thing in the email!

How about now?

Brandon Wu Regular Expressions 03 July 2023 9 / 61

Handrolling

The above is what we would term a hand-rolled function.

This is because it’s manually constructed, tedious, and as we will see, more easily
solvable in a way that doesn’t involve coding a solution from scratch. Hand-rolling is
usually undesirable, because more handwritten code means more possibility of
errors.

Mantra More code,more problems.

This same logic can apply to many situations. For instance, we might be interested
in validation for strings which look like home addresses, or strings which look like
filenames of images, or strings which are valid social security numbers.

Can we somehow find a way to automate the boilerplate process of writing code
like this?

Brandon Wu Regular Expressions 03 July 2023 10 / 61

A Family of Validators

Essentially, we are looking for a family of functions, which would have type
t -> string -> bool . This type t would need to be able to encode the
information of the entire form of one of these validation functions, such as
validateEmail , which could then be given as input to produce the validation
function itself.

In essence, we are looking for the "essence" of a string validation problem.

This type t will end up being the type of regular expressions.

Brandon Wu Regular Expressions 03 July 2023 11 / 61

2 - Regular Expressions

On Regular Expressions

Brandon Wu Regular Expressions 03 July 2023 13 / 61

On Regular Expressions

1

1There’s an xkcd for everything.
Brandon Wu Regular Expressions 03 July 2023 14 / 61

On Regular Expressions

PCRE, which stands for Perl Compatible Regular Expressions, is a particular library
and syntax for regular expressions, which allow us to solve certain string matching
problems.

We’ll take the PCRE, and cut out the PC. We don’t have time for that.

At the end of this lecture, you will not know how to actually use regular expressions
in the real world, but you will know how they work. That’s the important part.

Brandon Wu Regular Expressions 03 July 2023 15 / 61

Essential Elements Recursive Problems, Recursive Solutions

What are the essential elements that make up a "validator"? Recall the email
example we were just looking at. There’s a few important things that we should be
able to do:

• Concatenation - Match one pattern, and then another. For instance, matching
the name and then the @ symbol.

• Alternation - Match possibly one of two patterns. For instance, we could match
either org or com at the end.

• Iteration - Match one pattern, as much as you can. For instance, to match a
website, we needed to be able to match an alphanumeric character any number
of times.

This sure seems like a recursive definition.

Brandon Wu Regular Expressions 03 July 2023 16 / 61

Mathematical Notation Programmatic Thinking is Mathematical Thinking

Having now described the problem, let’s describe the mathematical definition of a
regular expression.

Def We say that an alphabet is a set of characters, that we are interested in strings
composed from. We usually denote this symbolically as Σ.

So for instance, we could have that Σ = {a, b}. Usually, our alphabet of interest will
simply be the alphabet of English letters.

Def We denote the set of strings over an alphabet Σ by the symbol Σ∗.

In this case, then we would have that "abaa" ∈ Σ∗.

Brandon Wu Regular Expressions 03 July 2023 17 / 61

More Mathematical Notation

Def We say that a language L is a subset of Σ∗. In other words, a language is a
particular set of strings composed from the alphabet Σ.

So we might say that some examples of languages over Σ = {a, b} are the empty
set, {a, aa, aaa, ...}, {b, bb, bbb, ...}, and {a, bb}.

When we say "string", we mean any finite-length sequence of characters from an
alphabet. This includes a string of length 0, which is really hard to write out. As
such, as will notate the empty string as ϵ.

Brandon Wu Regular Expressions 03 July 2023 18 / 61

Validators and Regular Expressions

Viewed in this notation, what is a validator?

A validator is simply a function which checks for membership within a language. For
instance, our validateEmail function is simply a function that checks if a string is
present in the language of all emails, with emails defined as we said previously.

Def We call a function f : string -> bool a validator for language L, if
f s =⇒∗ true iff s ∈ L.2

We will find that regular expressions allow us to implement validators for a class of
languages called regular languages. These have limitations on their complexity, but
in practice a large amount of string validation problems fall into them.

2As an aside, this idea of languages and validators over them is very closely tied to the idea of
computability! In particular, it is not possible, for every language L, to implement a validator for it. A
more thorough treatment of this is reserved for a class on computability theory, such as 15-251.

Brandon Wu Regular Expressions 03 July 2023 19 / 61

The Structure of a Regular Expression

Def Let’s first define the structure of a regular expression r:
• 0

• 1

• c, for any character c ∈ Σ

• r1 + r2, for two regular expressions r1 and r2

• r1r2, for two regular expressions r1 and r2

• r∗, for a regular expression r

If this looks to you like a datatype declaration, that’s because soon it will be.

Brandon Wu Regular Expressions 03 July 2023 20 / 61

The Language of a Regular Expression

Def We use the notation L(r) to denote the language matched by regular
expression r, over some alphabet Σ. Then:

Construct Language matched

L(c) {c}

L(0) {}

L(1) {ϵ}

L(r1 + r2) L(r1) ∪ L(r2)

L(r1r2) {s1s2 | s1 ∈ L(r1), s2 ∈ L(r2)}

L(r∗) {s1...sn | for n ≥ 0,when ∀i, si ∈ L(r)}

Brandon Wu Regular Expressions 03 July 2023 21 / 61

The Language of a Regular Expression, In English

Construct Matches

L(c) only c

L(0) nothing

L(1) only the empty string

L(r1 + r2) anything matched by either r1 or r2
L(r1r2) anything with a prefix matched by r1 and suffix matched by r2

L(r∗) any string which is something matched by r, 0 or more times

Brandon Wu Regular Expressions 03 July 2023 22 / 61

Regular Expression Examples

Let’s look at some examples of regular expressions and the languages they match.
In this example, let’s assume we are working with the alphabet Σ = {a, b}.

Regular Expression Language matched

a+ b {a, b}

abaa+ baa {abaa, baa}

(abaa+ baa)b {abaab, baab}

0 + a {a}

1 + a {ϵ, a}

a∗ {ϵ, a, aa, aaa, aaaa, ...}

Brandon Wu Regular Expressions 03 July 2023 23 / 61

On Formalism

Let’s ground ourselves a little bit. Why are we talking about this?

Regular expressions are a useful formalism that allow us to symbolically specify
certain languages. They are composable, since we can easily form regular
expressions out of other ones. We haven’t yet specified how to turn this formalism
into code that runs, but this is the model by which we will design our code.

In particular, recall the website example that we were talking about previously. We
can express our website validator by the following regular expression:

(ran + .+ _)∗@(ran
∗).(org + com)3

where ran is the regular expression of all alphanumeric characters, which could be
specified as a+ b+ ...+ z + 1 + 2 + ...+ 9 + 0.

3This is actually not quite it, because this regular expression allows an empty name or website. But
for the sake of brevity, we’ll go with this.

Brandon Wu Regular Expressions 03 July 2023 24 / 61

3 - Finite-State Automata

Regular Expressions and Automata

It is a very interesting fact that regular expressions can be viewed as finite-state
machines, which are graph-like constructs with states, which change upon
receiving characters as input. In particular, we can characterize them by
deterministic finite-state automata.4

For instance, here is a finite-state machine corresponding to the regex ab+ ba:

q1

q2

q3

q4

q5

a

b

b

a

4We can characterize them by nondeterministic finite-state automata as well. But this, too, will be
left in more detail to a class on computability.

Brandon Wu Regular Expressions 03 July 2023 26 / 61

The Anatomy of Automata

q1

q2

q3

q4

q5

a

b

b

a

Here, we denote the starting state by the state with an unlabeled in-arrow.

From a given state, transitions to other states upon reading a particular character
are denoted by arrows labeled with characters. If there is no arrow corresponding
to the input character, then the entire string is rejected.

We also say that a state is an accepting state if it is a node which has a circle in it. If
the state reached upon reading the entire input is an accepting state, then we say
that that string is in accepted by the FSM.

Brandon Wu Regular Expressions 03 July 2023 27 / 61

The Anatomy of Automata

Let’s try giving this DFA an input, namely the string ab.

q1

q2

q3

q4

q5

a

b

b

a

Remaining input: ab

Brandon Wu Regular Expressions 03 July 2023 28 / 61

The Anatomy of Automata

After reading a:

q1

q2

q3

q4

q5

a

b

b

a

Remaining input: b

Brandon Wu Regular Expressions 03 July 2023 29 / 61

The Anatomy of Automata

After reading b:

q1

q2

q3

q4

q5

a

b

b

a

No remaining input, so we end up in state q4, which is accepting.

So the string ab is accepted by this DFA.

Brandon Wu Regular Expressions 03 July 2023 30 / 61

Another Regular Expression Automaton

Here’s another DFA for the regular expression a∗bba∗:

q1 q2 q3

a

b b

a

You should be able to convince yourself that this automaton accepts all strings
which contain any number of as enclosing two bs.

Brandon Wu Regular Expressions 03 July 2023 31 / 61

4 - Matching Regular Expressions

On the Hardness of DFAs

We’ve seen that, using the DFA for a regular expression, we can visualize a
computational process for validating strings within a particular language.

This process is an extremely beautiful intersection where theory and practice
coincide, and is how many production regular expression engines5 work today.
However, the process of producing such an automaton from a regular expression is
rather involved. We will take another track for how to produce a validator from a
regular expression.

5https://github.com/google/re2
Brandon Wu Regular Expressions 03 July 2023 33 / 61

A Type for Regular Expressions Types Guide Structure

We notice that regular expressions are a recursive datatype – that is, regular
expressions are composed out of regular expressions.

We can define the type of regular expressions as follows:
datatype regexp =

Zero
| One
| Char of char
| Plus of regexp * regexp
| Times of regexp * regexp
| Star of regexp

Brandon Wu Regular Expressions 03 July 2023 34 / 61

Decomposing Regular Expressions Recursive Problems, Recursive Solutions

The definition of the language of a regular expression is a straightforward recursive
definition, which depends on the language of the regular sub-expressions. Let’s try
to write a function which can recursively decompose on a regular expression, and in
a backtracking way, try to match a string.

We will find that this is a good application of CPS. We will implement a function:

match : regexp -> char list -> (char list -> bool) -> bool
REQUIRES: k is total
ENSURES:
match r s k ∼=

{
true, if cs ∼= p @ s where p ∈ L(r) and k s ∼= true
false , otherwise

}

Brandon Wu Regular Expressions 03 July 2023 35 / 61

A Special Specification

This specification is kind of complicated. Can we desugar it at all?

We will find that this type makes our implementation a lot simpler. We use a
continuation, specific to return type bool, to denote a future condition we are
placing upon the rest of the character list. This is useful for branching possibilities,
because it lets us enforce a future condition on potentially many suffixes that we
might choose to consume input to obtain.

For instance, we might be interested in something which looks like
match r cs (fn cs’ => List.length cs’ = 3).

This essentially is a nondeterministic search over all possible prefixes that can be
taken by match , by the regex r, provided that the suffix to that prefix is of length 3.
We change the continuation in order to enforce a condition on all of the possibilities
we might pick.

Brandon Wu Regular Expressions 03 July 2023 36 / 61

A Visual Specification

prefix suffix

matched by r satisfies k

entire character list cs

Note that the prefix goes from left to right, as we gradually take off more and more
of the character list, trying out prefixes to see if they will eventually work.

Brandon Wu Regular Expressions 03 July 2023 37 / 61

match : Outline

fun match (r : regexp) (cs : char list) (k : char list ->
bool) : bool =

case r of
Zero => (* ... *)

| One => (* ... *)
| Char c => (* ... *)
| Plus (r1,r2) => (* ... *)
| Times (r1, r2) => (* ... *)
| Star r => (*... *)

Brandon Wu Regular Expressions 03 July 2023 38 / 61

match : Special Cases

Let’s write the cases for Zero and One first.

We know that Zero matches the empty language, so there is no possible prefix that
we can take. So we must reject.

Zero => false

For One, we only allow the empty string. So our prefix must necessarily be empty,
meaning that the only way to return true is if the entire list satisfies the continuation.

| One => k cs

Brandon Wu Regular Expressions 03 July 2023 39 / 61

match : Characters

For the Char case, we can actually start to take inputs off from the list. We know
that for the regexp Char c, the only string in that language is c, so the only prefix
we can take is the singleton list c.

So we write:
| Char c => (case cs of

[] => false
| c’ :: cs’ => c = c’ andalso k cs ’)

because in the empty case, there is no such prefix, and in the cons case, we still
need to make sure the suffix satisfies the continuation.

Brandon Wu Regular Expressions 03 July 2023 40 / 61

match : Alternation

What about the Plus (r1, r2) case? Here, we have the possibility of picking a
prefix from either r1 or r2.

Thankfully, the return type of our function match is just bool, and we’re not
required to write match tail recursively, so we can simply use two recursive calls:

| Plus (r1,r2) => match r1 cs k orelse match r2 cs k

We are essentially searching over all the strings matched by r1 and r2 separately,
but with the same suffix condition needing to be true. Either succeeding means that
we succeed in general.

Brandon Wu Regular Expressions 03 July 2023 41 / 61

match : Concatenation

For concatenation, we need to be able to pick a prefix from the cs for the first
regexp r1, but then pick another prefix after that for r2.
This is exactly the same as looking for a prefix of cs, but then looking for a prefix of
the corresponding suffix. Let’s write it:

| Times (r1, r2) => match r1 cs (fn cs ’ => match r2 cs’ k)

prefix suffix’s prefix suffix’s suffix

matched by r1 matched by r2 satisfies k

new character list cs ’

entire character list cs

Brandon Wu Regular Expressions 03 July 2023 42 / 61

match : Repetition

For the Star r case, we need to somehow be able to take 0 or more prefixes, all of
which match the r regexp.

This means that when we make a recursive call to match to find a single prefix, our
continuation on the corresponding suffix needs to be able to furthermore take more
prefixes of what’s left. In fact, we might not even need to find a single prefix.

We make an observation: the regular expression r∗ is the same as either matching
the empty string, or matching r one or more times.

Essentially, we are saying that L(r∗) = L(1 + rr∗).
| Star r =>

k cs orelse match r cs (fn cs ’ => match (Star r) cs’ k)

However, there’s something fishy here. Can you spy it?

Brandon Wu Regular Expressions 03 July 2023 43 / 61

match : Repetition

| Star r =>
k cs orelse match r cs (fn cs ’ => match (Star r) cs’ k)

In the continuation, we call match again on precisely the same arguments, except
for cs’. Is it possible, however, that cs’ might be the same as cs?

Answer: Yes, because our prefix might be empty!

In general, you should be suspicious whenever you see a recursive call which might
have arguments which do not change. That’s a surefire way to an infinite loop!

Brandon Wu Regular Expressions 03 July 2023 44 / 61

Repetition Repeatedly

We see that the case of r, where ϵ ∈ L(r), can cause a problem with this
implementation. For example, the input match (Star One) [#"a"] List.null
will loop forever. How can we solve this problem?

There are two ways. We can either weaken the specification or strengthen the
implementation.

Brandon Wu Regular Expressions 03 July 2023 45 / 61

On Weakness and Strength

What does weakening the specification mean? It means that, instead of claiming an
ambitious postcondition or a minimal precondition, we can either claim to do less,
by promising less in our postcondition, or add more caveats, by adding more
restrictions to our precondition.

What does strengthening the implementation mean? It means taking extra care by
writing more code so that we can fulfill our postconditions and preconditions as-is,
without needing to make any compromises.

Brandon Wu Regular Expressions 03 July 2023 46 / 61

On Weakness and Strength for fact

For instance, suppose we have the fact function.
fun fact 0 = 1

| fact n = n * fact (n - 1)

We loop forever on negative inputs, which is obviously undesirable. To solve this,
we can:
• strengthen the implementation by making it return an option on a negative

input, or
• weaken the specification by merely adding a precondition that negative inputs

are not permitted.

Both are valid ways, depending on how the function is used.

Brandon Wu Regular Expressions 03 July 2023 47 / 61

On Weakness and Strength

So how could we weaken the specification for our regular expression matcher? We
could require that the regular expression be passed in in a form such that there are
no occurrences of Star r, where ϵ ∈ L(r). This would be a cheap way of escaping,
by pushing the burden onto the caller.6

Another way is that we can strengthen the implementation, by making our match
function able to deal with the case where our prefix is the empty string. We can do
that by simply observing that the suffix is the same as the original char list.

We will take this approach for now.

6It turns out this can be done. We say that such regular expressions are in standard form. There is
a programmatic way of turning any regular expression into one in standard form, but which matches
the same language.

Brandon Wu Regular Expressions 03 July 2023 48 / 61

match : Repetition

| Star r =>
k cs orelse match r cs (fn cs ’ => cs’ <> cs andalso match
(Star r) cs’ k)

If not previously mentioned before, the <> is the polymorphic inequality operator.

Now, we check that our new suffix cs’ is not the same as the entire char list!
This way, we ensure that we always make progress, and because of short-circuiting
andalso , we ensure we never proceed to the recursive call on match .

Brandon Wu Regular Expressions 03 July 2023 49 / 61

match : Completed

fun match (r : regexp) (cs : char list) (k : char list -> bool) :
bool =

case r of
Zero => false

| One => k cs
| Char c => (case cs of

[] => false
| c’ :: cs’ => c = c’ andalso k cs ’)

| Plus (r1,r2) => match r1 cs k orelse match r2 cs k
| Times (r1, r2) => match r1 cs (fn cs’ => match r2 cs’ k)
| Star r =>

k cs orelse match r cs (fn cs’ => cs’ <> cs andalso match (
Star r) cs ’ k)

Brandon Wu Regular Expressions 03 July 2023 50 / 61

Validator, Completed

Now, we can define our function accept , using match :

accept : regexp -> string -> bool
REQUIRES: true
ENSURES: accept r s ∼= true iff s ∈ L(r), and false otherwise.

This comes from a simple observation that to accept a string, we have to make sure
that we match the entire string. In other words, the suffix is empty:

fun accept r s = match r (String.explode s) List.null

Super concise.

Brandon Wu Regular Expressions 03 July 2023 51 / 61

5 - Proving Correctness

Proving the Specification

Recall the specification of match .

match : regexp -> char list -> (char list -> bool) -> bool
REQUIRES: k is total
ENSURES:
match r s k ∼=

{
true, if cs ∼= p @ s where p ∈ L(r) and k s ∼= true
false , otherwise

}

This is a hefty one, but can we prove that it’s correct?

Brandon Wu Regular Expressions 03 July 2023 53 / 61

Proving the Specification

Because match returns a bool at the end of everything, there are four possible
behaviors that we are concerned with.

It can either:
• return the value true
• return the value false
• loops forever
• raises an exception

We would like to show that it only performs the first two behaviors, and only in the
right circumstances.

Brandon Wu Regular Expressions 03 July 2023 54 / 61

Reducing the Problem Programmatic Thinking is Mathematical Thinking

It is surprisingly hard to prove that match is total. We will assume that we have
already done so, because the proof is long and involved.

Lemma match r cs k, for total k, is always valuable.

Assuming that match r cs k always terminates, we only have the following two
behaviors:
• return the value true
• return the value false

In this world, then we only need to show the following theorem:
Thm. For total k, match r cs k, returns true iff cs ∼= p @ s where p ∈ L(r), and
k s ∼= true

We call the forward implication soundness, and the reverse implication
completeness.

Brandon Wu Regular Expressions 03 July 2023 55 / 61

Soundness and Completeness

Recall that we prove a bi-implication by proving each of the implications separately.
Thus, proving our theorem reduces to proving soundness and completeness
separately.

We will now prove this theorem by structural induction on r : regexp .

We have three base cases: Zero, One, and Char c.

We also have three inductive cases: Plus (r1, r2), Times (r1, r2), and
Star r. We will have inductive hypotheses tailored to the sub-regexes in each
case, for each branch of the proof.

For now, we will only prove the Plus case.

In the following two proofs, Let P (r) be the following:
Thm. For total k, match r cs k ↪→ true if and only if cs ∼= p @ s where p
∈ L(r), and k s ∼= true .

Brandon Wu Regular Expressions 03 July 2023 56 / 61

Soundness Proof

We would like to show the forward direction of P (Plus (r1, r2)), which is:
If match (Plus (r1, r2)) cs k ↪→ true , then

cs ∼= p @ s where p ∈ L(Plus (r1, r2)) , and k s ∼= true .

Let us assume that match (Plus (r1, r2) cs k) ∼= true .
Assume for our induction hypotheses the forward directions of P (r1) and P (r2).
In particular, P (r1) reads:

If match r1 cs k ∼= true , then
cs ∼= p @ s where p ∈ L(r1) , and k s ∼= true .

Then:
true ∼= match (Plus (r1, r2)) cs k (our assumption)
∼= match r1 cs k orelse match r2 cs k (def of match)

Brandon Wu Regular Expressions 03 July 2023 57 / 61

Soundness Proof

By the specification of orelse , this must mean that either match r1 cs k or
match r2 cs k ∼= true .

Without loss of generality7, assume that match r1 cs k ∼= true . Then, we can
apply our induction hypothesis P (r1), and obtain that
cs ∼= p @ s where p ∈ L(r1) and k s ∼= true .

By the definition of L(Plus(r1, r2)), this means that p ∈ L(Plus(r1, r2)) .

With both the previous and our inductive conclusion , then this is exactly what we
wanted to show, so we have proven the theorem .

7This is a fancy CMU way of saying that the proof is similar in either case, so we’re only going to
bother to prove it for one.

Brandon Wu Regular Expressions 03 July 2023 58 / 61

Completeness Proof

We would like to show the backwards direction of P (Plus (r1, r2)), which is:

If cs ∼= p @ s where p ∈ L(Plus(r1, r2)), and k s ∼= true , then
match (Plus (r1, r2)) cs k ∼= true

Let us assume that
cs ∼= p @ s where p ∈ L(Plus (r1, r2)) , and k s ∼= true .

Assume for our induction hypotheses the reverse directions of P (r1) and P (r2).
In particular, P (r1) reads:

If cs ∼= p @ s where p ∈ L(r1) , and k s ∼= true , then
match r1 cs k ↪→ true .

Brandon Wu Regular Expressions 03 July 2023 59 / 61

Completeness Proof

By the definition of L(Plus (r1, r2)), this assumption means that either
p ∈ L(r1) or p ∈ L(r2). Without loss of generality, assume that p ∈ L(r1) .

Then, we can apply our induction hypothesis P (r1), since we know that
cs ∼= p @ s where p ∈ L(r1) , and k s ∼= true . So match r1 cs k ↪→ true .

Then:

match (Plus (r1, r2)) cs k
∼= match r1 cs k orelse match r2 cs k (def of match)
∼= true (our previous conclusion)

So we have proven the theorem .

Brandon Wu Regular Expressions 03 July 2023 60 / 61

Thank you!

	Text Validation
	Regular Expressions
	Finite-State Automata
	Matching Regular Expressions
	Proving Correctness

