

Lesson Plan

1 Red-Black Trees

2 Maintaining Invariants

3 Implementing Red-Black Trees

4 A Final Trace

Brandon Wu Modules III: Red-Black Trees 13 July 2023 2 / 57

Last time

Last time, we iterating several times on implementing generic dictionaries, which
are dictionaries which can have keys (and data) of arbitrary type.

We tried implementing them via passing an explicit comparison function, but found
that this could lead to unsafety if comparison functions were mixed and matched.

We then used functors, which produce structures from other structures, to create a
MkDict functor, which creates a library for dictionaries of a particular key type,
from a given type and comparison function.

Brandon Wu Modules III: Red-Black Trees 13 July 2023 3 / 57

1 - Red-Black Trees

A Signature for Generic Dictionaries

Recall the POLY_DICT signature we used last lecture:
signature POLY_DICT =

sig
structure Key : ORD

(* mapping keys of type Key.t to values of ’a *)
type ’a t

val empty : ’a t
val insert : Key.t * ’a -> ’a t -> ’a t
val lookup : Key.t -> ’a t -> ’a option

end

Brandon Wu Modules III: Red-Black Trees 13 July 2023 5 / 57

A Worst-Case Case

Recall that our definition of insertion was just via comparing keys to root keys, and
going left or right depending on the result of that comparison, until eventually we
found an Empty node.

This is not actually a good way to store data in our dictionaries, because it might not
be O(log n) search time! In particular, consider the sequence of insertions of
inserting ascending numbers, for a tree with nodes of integer keys.

(empty) 7−→ 0 7−→
0

1
7−→

0

1

2

Brandon Wu Modules III: Red-Black Trees 13 July 2023 6 / 57

Inefficient Insertion

This sequence of insertions is inefficient, because we need to keep traversing to
the end of the spine to put the next element on. In essence, it’s an O(n) cost per
insertion and lookup, in the worst case, so we aren’t doing much better than a list!

We know the reason for this already, from our work and span calculations. This
amounts to the fact that our binary search trees may not always be roughly
balanced.

In this lecture, we will discuss and implement a new kind of data structure for
self-balancing binary search trees, called red-black trees.

Brandon Wu Modules III: Red-Black Trees 13 July 2023 7 / 57

Red-Black Trees

The definition of a red-black tree is as such:
datatype ’a rbtree =

Empty
| Red of ’a rbtree * (Key.t * ’a) * ’a rbtree
| Black of ’a rbtree * (Key.t * ’a) * ’a rbtree

Def A red-black tree is a kind of BST which has some nodes which are colored
red, and some nodes which are colored black. It also has three important invariants:

• It is a BST, meaning that its inorder traversal is sorted with respect to its keys.
• The children nodes of a Red node must be Black .
• Every path from the root to an Empty leaf node has the same number of Black

nodes. This is also known as the tree’s black height.

Brandon Wu Modules III: Red-Black Trees 13 July 2023 8 / 57

Efficient Insertion

From the invariants, we can derive the fact that the tree should support efficient
O(log n) insertion and lookup, in terms of the number of nodes in the tree n.

This is because the black height of any path is the same. In the worst case, the
heights on different paths could be very different because of the number of red
nodes, but because of the second property, the number of red nodes is, at
maximum, the black height plus 1.

The best and worst case for
black height relative to total

height of the tree,
respectively.

Brandon Wu Modules III: Red-Black Trees 13 July 2023 9 / 57

All Roads

Key This means on a given path to the bottom, there can be at worst
approximately as many red nodes as there are black nodes.

Equivalently, any path from the root to the bottom can be at worst twice the length
of another.

This isn’t a perfectly balanced tree, but it turns out this is close enough to
guarantee asymptotic O(log n) traversal.

That’s the theory. How do we ensure that we can maintain these invariants?

Brandon Wu Modules III: Red-Black Trees 13 July 2023 10 / 57

2 - Maintaining Invariants

Balance in All Things

The main operations we are concerned with are insert and remove . Since a
red-black tree is a BST, we can look up in the same way, by just traversing down a
path according to our comparison function.

For insertion, we cannot avoid traversing the same path, as we cannot ever go to
the left of a node we are LESS than, nor can we go right of a node we are GREATER
than. However, after we insert, we have some options for rebalancing our tree.

Def A self-balancing tree is a kind of tree data structure that can perform some
balancing operations upon insertion or removal, to ensure the tree remains
approximately balanced.

Brandon Wu Modules III: Red-Black Trees 13 July 2023 12 / 57

The Color of Insertion

Let’s consider the insertion case. If we’re inserting into an arbitrary tree, what
should we color the newly created node?

3

2 5

4 6

insert 1 7→

3

2

1

5

4 6

Clearly, we have two cases. We can either color the node red, or we can color the
node black.

Brandon Wu Modules III: Red-Black Trees 13 July 2023 13 / 57

Inserting: Black

Consider the black height invariant. If every path in the tree has the same black
height, then clearly we cannot color the node black, because the newly created
path will have a greater black height!

3

2

1

5

4 6

Black height invariant: ✗

Red children invariant: ✓

Black height (blue path): 3

Black height (magenta path): 2

Brandon Wu Modules III: Red-Black Trees 13 July 2023 14 / 57

Inserting: Red

What if we color the node red?

3

2

1

5

4 6

Black height invariant: ✓

Red children invariant: ✓

We see that coloring a node red will always end
up satisfying the black height invariant, because
the black height of every path will remain the
same.

But, what about our other invariants? Let’s see an
example on a slightly different tree.

Brandon Wu Modules III: Red-Black Trees 13 July 2023 15 / 57

An Insertion Example

Let’s insert again on a different tree. This time, suppose we’re inserting with a key of
2.

4

1

3

5 insert 2 7→

4

1

3

2

5

As before, let’s color the node red.

Brandon Wu Modules III: Red-Black Trees 13 July 2023 16 / 57

Red-Red Violations

4

1

3

2

5

Black height invariant: ✓

Red children invariant: ✗

Uh oh, our heuristic of "always color new nodes
red" didn’t get us very far.

It only works in the case where our parent is black.
Otherwise, we end up in a red-red violation.

We also probably don’t want to produce a tree of
this shape anyways, because it’s not as balanced
as it could be! How can we fix this?

Brandon Wu Modules III: Red-Black Trees 13 July 2023 17 / 57

An Ideal Tree

If we had free rein to transform this tree, how
would we ideally balance it?

We would like to produce this tree:

But what should we color the nodes of 1 , 2 ,
and 3 to ensure our invariants are respected?

We are going to choose to color the higher node
red, which will force its children to be black, and
see why this was the correct choice.

4

2

1 3

5

Brandon Wu Modules III: Red-Black Trees 13 July 2023 18 / 57

Triads of Color

This will end up producing a valid red-black tree.

But why did we choose to do it this way? We
could have also decided to color it the other way,
with the root node being black, and the children
being red.

4

2

1 3

5

Black height invariant: ✓

Red children invariant: ✓

Brandon Wu Modules III: Red-Black Trees 13 July 2023 19 / 57

Triads of Color

This is a valid red-black tree, but we will see that
there are cases where we can’t do this!

4

2

1 3

5

Black height invariant: ✓

Red children invariant: ✓

Brandon Wu Modules III: Red-Black Trees 13 July 2023 20 / 57

Another Insertion Example

Let’s insert again on a tree which looks very similar, but has an extra 0 node. As
before, we insert the key 2:

4

1

0 3

5 insert 2 7→

4

1

0 3

2

5

Brandon Wu Modules III: Red-Black Trees 13 July 2023 21 / 57

Another Insertion Example

Well, if we want to rebalance this tree in the same
way, we have to move the 2 up to 1’s current
position. But what should we do with the 0 node?

Because 0 is less than 1, we have no choice but to
keep it left of 1! So we get:

Now, we have two choices over what we can color
this triplet.

4

2

1

0

3

5

Brandon Wu Modules III: Red-Black Trees 13 July 2023 22 / 57

Canonical Red Roots

4

2

1

0

3

5

Black height invariant: ✓

Red children invariant: ✗

We see that only
the triplet
coloring with red
at the root is
valid!

This will form
the basis for our
canonical
rebalance
coloring
scheme.

4

2

1

0

3

5

Black height invariant: ✓

Red children invariant: ✓

Brandon Wu Modules III: Red-Black Trees 13 July 2023 23 / 57

Kinds of Rotations

Now that we’ve seen a few examples, we’re ready to more in-depth describe our
scheme for inserting nodes into a red-black tree.

Our idea will be to insert a node, and always color it red, to maintain black height. If
this induces a red-red violation, then we will simply rotate the tree, and recolor to
prevent a red-red violation.

Brandon Wu Modules III: Red-Black Trees 13 July 2023 24 / 57

Kinds of Rotations

There are four cases we are interested in, for red-red violations.

z

y

x

11 22

33

44

z

x

11 y

22 33

44

x

11 z

y

22 33

44

x

11 y

22 z

33 44

Given three nodes with arbitrary children, it turns out there is a prescribed way that
we will rotate each of these cases. In fact, the resulting subtree is the same!

Brandon Wu Modules III: Red-Black Trees 13 July 2023 25 / 57

A Rebalancing Target

Given nodes x, y, and z, which are ordered in
the same way as the letters we have used to
denote them, there is only one tree which we
can produce:

A key observation of this rebalancing scheme is
that, because the bottom nodes are colored
black, it is impossible to produce a red-red
violation from the connections to the children
trees 1, 2, 3, and 4, irrespective of color!

Given that we have also preserved black height,
because each path to the children trees still
encounters one black node, are we done?

y

x

11 22

z

33 44

Brandon Wu Modules III: Red-Black Trees 13 July 2023 26 / 57

Right Rotations

z

y

x

11 22

33

44
7−→

y

x

11 22

z

33 44

←− [

z

x

11 y

22 33

44

These two examples illustrate what is known as a right rotation. We will implement
a function restoreLeft to do this, because it’s restoring a path that goes left.

Brandon Wu Modules III: Red-Black Trees 13 July 2023 27 / 57

Left Rotations

x

11 z

y

22 33

44
7−→

y

x

11 22

z

33 44

←− [

x

11 y

22 z

33 44

These two examples illustrate what is known as a left rotation. Similarly, we will
implement a function called restoreRight that will fix this situation.

Brandon Wu Modules III: Red-Black Trees 13 July 2023 28 / 57

Another Another Insertion Example

Let’s see! Let’s do another example, which is identical to the last one, except that
the root is colored red. As before, we insert the key 2:

4

1

0 3

5 insert 2
7→

4

1

0 3

2

5
rebalance!
7→

4

2

1

0

3

5

Uh oh...

Brandon Wu Modules III: Red-Black Trees 13 July 2023 29 / 57

Another Another Insertion Example

4

2

1

0

3

5

Black height invariant: ✓

Red children invariant: ✗

We see that we end up with a red-red violation.

However, a neat fact about red-black trees is that
the root can always be colored black, no matter
what!

Check your understanding Why does this
preserve the invariants?

Brandon Wu Modules III: Red-Black Trees 13 July 2023 30 / 57

On Preserving Balance

4

2

1

0

3

5

Black height invariant: ✓

Red children invariant: ✓

So by coloring the root node black for free, we
end up getting a valid red-black tree.

A question remains – did we get lucky? What
happens if we aren’t at the root?

Our issue was that rebalancing our subtree to get
rid of a red-red violation might introduce another
red-red violation, slightly above it. Our scheme
will be to continuously rebalance, and push the
red-red violation further upwards, until we
potentially reach the root, or no longer have a
violation.

Brandon Wu Modules III: Red-Black Trees 13 July 2023 31 / 57

3 - Implementing Red-Black Trees

Almost Done

We can formalize the notion of our algorithm by defining a new kind of tree, which
we will call an almost red-black tree.1

Def An almost red-black tree shares the same properties as a red-black tree, but
its root node and one of the root node’s children may both be red.

In other words, an almost red-black tree is allowed to break the red children
invariant, once, and only at the root.

1Sort of in the same way that I am an almost professor, which is to say, I am not one.
Brandon Wu Modules III: Red-Black Trees 13 July 2023 33 / 57

Restoration Functions

Here is a specification for our rotation functions, which we will call restoreLeft
and restoreRight .

restoreLeft : ’a rbtree -> ’a rbtree
REQUIRES: T is an RBT, or T is a Black tree, with a left child that is an ARBT,
and a right child that is an RBT
ENSURES: restoreLeft T is an RBT with the same entries as T

restoreRight : ’a rbtree -> ’a rbtree
REQUIRES: T is an RBT, or T is a Black tree, with a right child that is an ARBT,
and a left child that is an RBT
ENSURES: restoreRight T is an RBT with the same entries as T

Brandon Wu Modules III: Red-Black Trees 13 July 2023 34 / 57

Restoration Functions

Recall that functions which do not appear in the signature of a module are not
visible to users of the library. This means that, after we write restoreLeft and
restoreRight , they are only for internal use, in helping us implement insert !

Note also that although restoreLeft and restoreRight produce true RBTs, it
may produce an ARBT in the node right above it, if it is colored red. We will
percolate these fixes up as we insert, however.

Brandon Wu Modules III: Red-Black Trees 13 July 2023 35 / 57

Restoring Left

fun restoreLeft (Black(Red(Red(t1,x,t2),y,t3),z,t4)) =
Red(Black(t1,x,t2), y, Black(t3,z,t4))

z

y

x

11 22

33

44
7−→

y

x

11 22

z

33 44

Brandon Wu Modules III: Red-Black Trees 13 July 2023 36 / 57

Restoring Left

fun restoreLeft (Black(Red(Red(t1,x,t2),y,t3),z,t4)) =
Red(Black(t1,x,t2), y, Black(t3,z,t4))

| restoreLeft (Black(Red(t1,x,Red(t2,y,t3)),z,t4)) =
Red(Black(t1,x,t2), y, Black(t3,z,t4))

z

x

11 y

22 33

44
7−→

y

x

11 22

z

33 44

Brandon Wu Modules III: Red-Black Trees 13 July 2023 37 / 57

Restoring Left

fun restoreLeft (Black(Red(Red(t1,x,t2),y,t3),z,t4)) =
Red(Black(t1,x,t2), y, Black(t3,z,t4))

| restoreLeft (Black(Red(t1,x,Red(t2,y,t3)),z,t4)) =
Red(Black(t1,x,t2), y, Black(t3,z,t4))

| restoreLeft other = other

And finally, any other input doesn’t need to be restored from the left, so we omit it
here.

Now we can proceed to the right case.

Brandon Wu Modules III: Red-Black Trees 13 July 2023 38 / 57

Restoring Right

fun restoreRight (Black(t1,x,Red(Red(t2,y,t3),z,t4))) =
Red(Black(t1,x,t2), y, Black(t3,z,t4))

x

11 z

y

22 33

44
7−→

y

x

11 22

z

33 44

Brandon Wu Modules III: Red-Black Trees 13 July 2023 39 / 57

Restoring Right

fun restoreRight (Black(t1,x,Red(Red(t2,y,t3),z,t4))) =
Red(Black(t1,x,t2), y, Black(t3,z,t4))

| restoreRight (Black(t1,x,Red(t2,y,Red(t3,z,t4)))) =
Red(Black(t1,x,t2), y, Black(t3,z,t4))

x

11 y

22 z

33 44

7−→

y

x

11 22

z

33 44

Brandon Wu Modules III: Red-Black Trees 13 July 2023 40 / 57

Restoring Right

fun restoreRight (Black(t1,x,Red(Red(t2,y,t3),z,t4))) =
Red(Black(t1,x,t2), y, Black(t3,z,t4))

| restoreRight (Black(t1,x,Red(t2,y,Red(t3,z,t4)))) =
Red(Black(t1,x,t2), y, Black(t3,z,t4))

| restoreRight other = other

And finally, as before, restoreRight also acts as the identity function on any input
which is not one of the two rotation cases.

Brandon Wu Modules III: Red-Black Trees 13 July 2023 41 / 57

On to Insertion

Now that we’ve written our balancing functions, let’s handle insertion.

We will achieve this via two functions. One will carry out the insertion algorithm we
described previously, and one will be a wrapper function that simply takes care of
the rectifying any red-red violations at the root.

Brandon Wu Modules III: Red-Black Trees 13 July 2023 42 / 57

Does Anyone Read These Titles

insert : (Key.t * ’a) -> ’a rbtree -> ’a rbtree
REQUIRES: T is an RBT
ENSURES: insert (k, v) T is an RBT with all the entries of T, plus the
key-value pair (k, v). If an entry already exists, it is replaced.

We will define the ins function locally to the definition of insert , meaning that it
does not need to take the key-value pair as an argument, since it is already in the
environment.

ins : ’a rbtree -> ’a rbtree
REQUIRES: T is an RBT
ENSURES: ins (k, v) T has the same specification as insert , but
ins (k, v) (Black v) is an RBT, and ins (k, v) (Red v) is an ARBT.

Brandon Wu Modules III: Red-Black Trees 13 July 2023 43 / 57

Implementing insert

fun insert (k, v) T =
let

fun ins T = (* ... *)
in

case ins (k, v) T of
Red v => Black v

| other => other
end

If there is ever a red root, we can safely recolor it to black. We only want to do this
at the true root of the tree, however, hence why we have the outer insert , which is
not recursive.
Now, we must define the ins function, which will do the real work of the insertion
algorithm.

Brandon Wu Modules III: Red-Black Trees 13 July 2023 44 / 57

Implementing ins

Note that this function is being written in the body of insert , so we obtain the
values of k and v as the argument, the key-value pair we are trying to insert.

fun ins Empty = Red (Empty , e, Empty)
| ins (Black (l, (k’, v’), r)) =

(case Key.compare (k, k’) of
EQUAL => Black (l, (k, v), r))

| LESS => restoreLeft (Black (ins l, (k’, v’), r))
| GREATER => restoreRight (Black (l, (k’, v’), ins r))

| ins (Red (l, (k’, v’), r)) =
(case Key.compare (k, k’) of

EQUAL => Red (l, (k, v), r)
| LESS => Red (ins l, (k’, v’), r)
| GREATER => Red (l, (k’, v’), ins r))

Brandon Wu Modules III: Red-Black Trees 13 July 2023 45 / 57

Implementing ins

fun ins Empty = Red (Empty , e, Empty)
| ins (Black (l, (k’, v’), r)) =

(case Key.compare (k, k’) of
EQUAL => Black (l, (k, v), r))

| LESS => restoreLeft (Black (ins l, (k’, v’), r))
| GREATER => restoreRight (Black (l, (k’, v’), ins r))

| ins (Red (l, (k’, v’), r)) =
(case Key.compare (k, k’) of

EQUAL => Red (l, (k, v), r)
| LESS => Red (ins l, (k’, v’), r)
| GREATER => Red (l, (k’, v’), ins r))

Note that we do the restoreLeft and restoreRight calls only when inserting
into the left and right trees, respectively.
We also don’t need to restore when inserting into a Red tree – why is that?

Brandon Wu Modules III: Red-Black Trees 13 July 2023 46 / 57

Lookup

Lookup for a red-black tree looks similar to the regular BST case:

fun lookup k Empty = NONE
| lookup k (Red (l, (k’, v’), r)

| Black (l, (k’, v’), r)) =
case Key.compare (k, k’) of

EQUAL => SOME v’
| LESS => lookup k l
| GREATER => lookup k r

Here, we make use of something called an or-pattern, to reduce some boilerplate.
This is a pattern (<pat1 > | <pat2 >) that is matched if either <pat1 > or <pat2 >
is matched, but is only valid so long as both patterns introduce the exact same
bindings, with the same types.

Brandon Wu Modules III: Red-Black Trees 13 July 2023 47 / 57

to err is human, to functor divine

Now we can assemble the final parts of the puzzle, by putting everything we just
wrote in a functor2, so that we can achieve full generality!

functor MkRedBlackDict (Key : ORD) :> POLY_DICT =
struct

structure Key = Key

datatype ’a rbtree =
Empty

| Red of ’a rbtree * (Key.t * ’a) * ’a rbtree
| Black of ’a rbtree * (Key.t * ’a) * ’a rbtree

(* ... *)
end

2Remember those? This didn’t stop being a lecture on modules, or anything.
Brandon Wu Modules III: Red-Black Trees 13 July 2023 48 / 57

The Final Implementation

functor MkRedBlackDict (Key : ORD) :> POLY_DICT =
struct

structure Key = Key

datatype ’a rbtree =
Empty

| Red of ’a rbtree * (Key.t * ’a) * ’a rbtree
| Black of ’a rbtree * (Key.t * ’a) * ’a rbtree

type ’a t = ’a rbtree

val empty = Empty

fun restoreLeft (Black(Red(Red(t1 ,x,t2),y,t3),z,t4)) =
Red(Black(t1,x,t2), y, Black(t3,z,t4))

| restoreLeft (Black(Red(t1 ,x,Red(t2,y,t3)),z,t4)) =
Red(Black(t1,x,t2), y, Black(t3,z,t4))

| restoreLeft other = other

fun restoreRight (Black(t1,x,Red(Red(t2,y,t3),z,t4))) =
Red(Black(t1,x,t2), y, Black(t3,z,t4))

| restoreRight (Black(t1,x,Red(t2,y,Red(t3 ,z,t4)))) =
Red(Black(t1,x,t2), y, Black(t3,z,t4))

| restoreRight other = other

(* ... *)

Brandon Wu Modules III: Red-Black Trees 13 July 2023 49 / 57

The Final Implementation

(* ... *)

fun insert (k, v) T =
let

fun ins Empty = Red (Empty , e, Empty)
| ins (Black (l, (k’, v’), r)) =

(case Key.compare (k, k’) of
EQUAL => Black (l, (k, v), r))

| LESS => restoreLeft (Black (ins l, (k’, v’), r))
| GREATER => restoreRight (Black (l, (k’, v’), ins r))

| ins (Red (l, (k’, v’), r)) =
(case Key.compare (k, k’) of

EQUAL => Red (l, (k, v), r)
| LESS => Red (ins l, (k’, v’), r)
| GREATER => Red (l, (k’, v’), ins r))

in
case ins (k, v) T of

Red v => Black v
| other => other

end

fun lookup k Empty = NONE
| lookup k (Red (l, (k’, v’), r)

| Black (l, (k’, v’), r)) =
case Key.compare (k, k’) of

EQUAL => SOME v’
| LESS => lookup k l
| GREATER => lookup k r

end

Brandon Wu Modules III: Red-Black Trees 13 July 2023 50 / 57

4 - A Final Trace

A Final Trace

5

1

0 4

3

6

7

insert 2
7→

5

1

0 4

3

2

6

7
red-red

violation!
7→

5

1

0 4

3

2

6

7

Brandon Wu Modules III: Red-Black Trees 13 July 2023 52 / 57

A Final Trace

5

1

0 4

3

2

6

7 rebalance!
7→

5

1

0 3

2 4

6

7

red-red
violation!
7→

5

1

0 3

2 4

6

7

Brandon Wu Modules III: Red-Black Trees 13 July 2023 53 / 57

A Final Trace

5

1

0 3

2 4

6

7
rebalance! 7→

3

1

0 2

5

4 6

7

Brandon Wu Modules III: Red-Black Trees 13 July 2023 54 / 57

A Final Trace

3

1

0 2

5

4 6

7

red root! 7→

3

1

0 2

5

4 6

7

Brandon Wu Modules III: Red-Black Trees 13 July 2023 55 / 57

A Final Trace

Now, we obtain a full RBT!

3

1

0 2

5

4 6

7

Black height invariant: ✓

Red children invariant: ✓

Brandon Wu Modules III: Red-Black Trees 13 July 2023 56 / 57

Thank you!

	Red-Black Trees
	Maintaining Invariants
	Implementing Red-Black Trees
	A Final Trace

