


Lesson Plan

1 Administrivia

2 The Philosophy of Functional Programming

3 Types, Expressions, Values

4 Declarations

Brandon Wu Prologue 16 May 2023 2 / 48



1 - Administrivia



Myself

I’m an alum who graduated last year with a degree in computer science from CMU.

I TA’d 150 for three years while I was at CMU, and I currently work a full-time job as a
software engineer at a security company called Semgrep, doing functional
programming1 for program analysis.

This means I am uniquely equipped as someone who works in the industry, to say
that functional programming is really useful.

Note I am not a professor.

1Using a language very similar to the one you will learn in this class.
Brandon Wu Prologue 16 May 2023 4 / 48

https://semgrep.dev/


The Course Staff

Nancy Brandon Wu Sonya

Kaz Deya Caroline Stephen Brandon Michael

Brandon Wu Prologue 16 May 2023 5 / 48



Course Logistics

• Homework every week – due on Tuesdays or Thursdays (see the lecture
schedule!)

• Turn in assignments via Gradescope
• Receive assignments via Canvas
• Piazza for any questions
• If you are not in all of { Gradescope, Piazza, Canvas } please let me know
• Slides, course policy, and other information at the course website here

Brandon Wu Prologue 16 May 2023 6 / 48

http://www.cs.cmu.edu/~15150/


The Schedule

The full summer schedule can be found here (click me!)

Brandon Wu Prologue 16 May 2023 7 / 48

https://docs.google.com/spreadsheets/d/1Q6utpsc1vm2WbW2aDyR4mGiFoDJSiBsVSiQmkBarqT0/edit?usp=sharing


Grading

The grading policy for this semester will follow a choose-your-own-adventure
format.

There are two tracks of grades that we will support, the "Lecture Track" and the
"Homework Track".

The Lecture Track is for students who would like to earn points via lecture
attendance. Homework will count for 42% of the final grade, and lecture attendance
will be 3%.
The Homework Track is for students who would rather not be graded for lecture
attendance. Homework will instead count for 45%, and there will be no grading on
lecture attendance.

Grading scheme selection will occur via Piazza after the first week.

Brandon Wu Prologue 16 May 2023 8 / 48



Grading: Lecture Track

(visualized via % of Farnam)

• Homework: 42%
• Lecture Attendance: 3%
• Lab Attendance: 10%
• Midterm 1: 10%
• Midterm 2: 15%
• Final: 20%

Brandon Wu Prologue 16 May 2023 9 / 48



Grading: Homework Track

(visualized via % of Farnam)

• Homework: 45%
• Lab Attendance: 10%
• Midterm 1: 10%
• Midterm 2: 15%
• Final: 20%

Brandon Wu Prologue 16 May 2023 10 / 48



House System

This semester, we are implementing a house system.2

The class has been divided into three labs of roughly 20 students, which each
forms a "house". Each house will be eligible to earn points on the merits of:

• Asking good questions on Piazza
• Giving good answers on Piazza
• Answering questions during lecture

Twice a semester, the house with the most points will earn boba for their entire
lab.

2Yes, like Harry Potter.
Brandon Wu Prologue 16 May 2023 11 / 48



Active Learning

It is better to learn by exercising your mind actively, rather than passively absorbing
information in a lecture setting.

To facilitate this, we will have active learning exercises during lecture. There will be
a short (roughly 5 minute) quiz in the middle of every single lecture, that will not
count towards your grade. Instead, it will simply be used by TAs to judge where
your understanding may be lacking.

In particular, these quizzes are a whole-house effort! Every house will take the quiz
together, and whichever house scores the highest cumulatively earn points for their
house, and be crowned that lecture’s victor, along with earning other prizes.

This means that winning the house competition is a whole-house effort! It’s in your
interest to discuss with others during these quizzes, and fill in gaps in yours and
others’ understanding.

Brandon Wu Prologue 16 May 2023 12 / 48



Wellness

Your health is important.

The things you will learn in this class are important, but remember that it’s just a
class. If you’re sleeping 4 hours a night, skipping meals, or otherwise compromising
your health for the sake of this class, something is wrong.

Things that are required:
• Sleeping
• Eating
• Socializing (for most people)
• Paying taxes

Things that are not required:
• Finishing 150 homework at the expense of these four things3

3Especially the last one.
Brandon Wu Prologue 16 May 2023 13 / 48



Wellness

Take care of yourself, and if you’re experiencing difficulties, don’t hesitate to reach
out to myself or a TA you trust. For more severe cases, please go to
http://www.cmu.edu/counseling/

My job is to teach you, not to ruin your life. If you’re struggling, talk to me. Let’s
make a plan to help you succeed.

Brandon Wu Prologue 16 May 2023 14 / 48

http://www.cmu.edu/counseling/


2 - The Philosophy of Functional
Programming



What is Functional Programming?

What is functional programming?

Well, hold up. What is programming?

Brandon Wu Prologue 16 May 2023 16 / 48



What is Programming?

Programming is the act of instructing a computer on how to achieve some kind of
operation.

Programming is inherently a communicative act.

Instructing is the key word. Good communication exists, so what is good programming?

Functional programming is an improvement on our ability to communicate as
programmers.

Brandon Wu Prologue 16 May 2023 17 / 48



What should programming be?

Good programming should be descriptive.

Brandon Wu Prologue 16 May 2023 18 / 48



What should programming be?

Good programming should be modular.

Logically distinct parts should be separated, for separate maintenance and reuse.

You should be able to think about a single area of a codebase without needing to
concern yourself with unrelated logic.

Brandon Wu Prologue 16 May 2023 19 / 48



What should programming be?

Good programming should be maintainable.

Programs should be written with future maintainability in mind.

This goes hand-in-hand with descriptivity and modularity, but code which is written
expressively, and has future expansion in mind, will be easiest to maintain.

Brandon Wu Prologue 16 May 2023 20 / 48



What is Not Functional Programming?

Let’s look at an example of non-functional code in Python.
count = 0

def increment ( ) :
global count
count += 1

return count
What does increment () return?

The answer: it depends. On the first call, it returns 1, and on the second call, 2, and
so on.

This demonstrates what we call state.

Brandon Wu Prologue 16 May 2023 21 / 48



Programming, By Analogy

Suppose you are a master chef at a 5-star restaurant.

An imperative program is like a fully crowded kitchen with no rules.
• Everyone uses the same ingredients and the same cookware.
• Each cook is an individual actor that can mess with the others, if care is not

taken. The health of the kitchen depends on each individual chef.

A functional program is like a kitchen where each cook has their own working space.
• Everyone has their own pots, pans, and ingredients, and they only share things

when they finish producing their individual parts.
• Each cook only interacts when sharing finished results. This means it is

impossible for one cook’s actions to mess up another’s cooking.

Brandon Wu Prologue 16 May 2023 22 / 48



Programming, Two Ways

Programming, Imperatively Programming, Functionally

Computation by modifying
the computer’s state

Computation by reduction of
expressions to values

x := 2;

x + x 2 + 2

Brandon Wu Prologue 16 May 2023 23 / 48



Programming, Two Ways

In stateful programs, we use commands like x := 2 to change the world, to be one
where x + x is 4.
This doesn’t stop another part of the program from changing that later!

In functional programs, we apply simplifying rules to expressions like 2 + 2, to
obtain the value of 4.
These expressions are disjoint, in that evaluation of one expression is unrelated to
the evaluation of another.

In stateful programs, understanding a program entails not only understanding what
the code does, but knowing the entire history of the program up until that point.

Brandon Wu Prologue 16 May 2023 24 / 48



What is functional programming?

Functional programming avoids modification of state.

Def A function is pure if it does not have any observable side effects, and always
returns the same outputs, given the same inputs.

A large amount of problems in computer science are of a pure nature. This means
that they give the same outputs for the same inputs. (For example, finding the
shortest path through a graph, computing the nth prime number, or compressing a
file)
An important motivation behind functional programming will end up being that we
should prefer to solve pure problems with pure components. In other words, don’t
introduce state when it’s not necessary!

Brandon Wu Prologue 16 May 2023 25 / 48



Three Theses

Functional programming can be characterized by three theses, which will be a
recurring theme throughout the semester.

1 Recursive Problems, Recursive Solutions

2 Programmatic Thinking is Mathematical Thinking

3 Types Guide Structure

Brandon Wu Prologue 16 May 2023 26 / 48



Recursive Problems, Recursive Solutions

In this class, almost every single function you write will be recursive.

Many problems in computer science lend themselves to a recursive formulation.
These are naturally solved by recursive solutions.

We will see that lists, trees, and other important structures employ a simple
recursive description.

Brandon Wu Prologue 16 May 2023 27 / 48



Programmatic Thinking is Mathematical Thinking

Programs are simpler and more understandable when viewed in a mathematical
lens.

Functional programming allows reasoning about programs and their subcomponents
in the same way that you would reason about a mathematical expression.

Furthermore, mathematical analysis of code grants techniques to reason about
things like time complexity, parallel time complexity, and program correctness.
Functional programs are very amenable to proofs of correctness!

We’re not just in the business of writing code, but correct code!

Brandon Wu Prologue 16 May 2023 28 / 48



Types Guide Structure

Before, we described programming as an explanatory, communicative process.

We also stated how descriptivity and maintainability are key goals for good
programming.

Functional programming places a great emphasis on types, which serve the
purpose of documenting the purpose of code, and restricting the range of
behaviors that a program is allowed to exhibit.

In this way, types guide the structure of a program, by providing clean interfaces for
how different parts should interact, and what it should be allowed to do.

Brandon Wu Prologue 16 May 2023 29 / 48



5-minute break!



3 - Types, Expressions, Values



The Standard ML Language

In this class, we will be using a functional programming language called Standard
ML (SML).

Mantra In Standard ML, computation is evaluation.

Evaluation of what, though? The most fundamental unit of an SML program is called
an expression.

Def An expression is the building block of an SML program. These may or may not
evaluate to a value.

Def A value is a final answer, that cannot be simplified further.

Examples of values include 2, "hi", and true .
Examples of expressions include 2, 2 + 2, and 4 * 5

Brandon Wu Prologue 16 May 2023 32 / 48



Evaluation

To evaluate an expression like (2 + 3) * 4, we apply simplifying rules. So we get:

(2 + 3) * 4 =⇒ 5 * 4
=⇒ 20

Def We use the =⇒ symbol to denote stepping (or reducing) of expressions,
which means to simplify an expression by one step.

Def We use the =⇒∗ symbol to denote the application of the =⇒ relation an
arbitrary number of times, usually until completion.
So the expression 5 * 4 steps to the expression 20, and the expression
(2 + 3) * 4 =⇒∗ 20.

Brandon Wu Prologue 16 May 2023 33 / 48



Computation as Evaluation

We call the previous slide the computation trace of the expression (2 + 3) * 4.
The goal of a computation trace is to produce a value.

If we know that the expression e eventually reduces down to value v, we might say
that e reduces to v, or write e ↪→ v. We then say that e is valuable.
So (2 + 3) * 4 ↪→ 20.

Brandon Wu Prologue 16 May 2023 34 / 48



Computation without Valuation

We said before that the goal of a computation trace is to produce a value, but not all
expressions do!

What value does the expression 1 div 0 reduce to?

The answer: there is no such value! Division by zero is undefined, and in Standard
ML, raises an exception.

Evaluating an expression has three possible behaviors:
• Reducing to a value
• Raising an exception
• Looping forever

Brandon Wu Prologue 16 May 2023 35 / 48



Computation without Meaning

In Standard ML, the string concatenation operator is ^.
So we would say that "hi" ^ "there" =⇒ "hithere".
But what does "1" ^ 50 step to?

Some programming languages might try to make sense of this expression.
Standard ML will not.

Brandon Wu Prologue 16 May 2023 36 / 48



Types

Def A type is a specification of the behavior of a piece of code. It predicts what a
program is allowed to do.
We write e : t to say that the expression e has type t, so we could write
1 + (2 * 3) : int.

For instance, something with type int must produce a number, if it reduces to a
value.
Similarly with something of type string .

What can we say about the runtime behavior of "1" ^ 50? It’s not clear, so the
expression "1" ^ 50 does not have a type.

Brandon Wu Prologue 16 May 2023 37 / 48



Typing Trace

How does Standard ML know the type of an expression?
It follows typing rules to determine this. For instance:

Def The typing rule for + is: e1 + e2 : int if e1 : int and e2 : int

Take the expression 1 + (2 + 3).

Then, we know 1 + (2 + 3) : int if 1 : int and 2 + 3 : int.
We know 1 : int.
Then, we know 2 + 3 : int if 2 : int and 3 : int.
We know 2 : int.
We know 3 : int.
So 1 + (2 + 3) : int.

Brandon Wu Prologue 16 May 2023 38 / 48



Ill-Typing Trace

What about for "1" ^ 50?

Def The typing rule for ^ is: e1 ^ e2 : string if e1 : string and
e2 : string

Take the expression "1" ^ 50.

Then, we know "1" ^ 50 : string if "1" : string and 50 : string .
We know "1" : string .
However, it is not true that 50 : string , because 50 : int.

So "1" ^ 50 does not have a type, and we say it is an ill-typed expression.

Brandon Wu Prologue 16 May 2023 39 / 48



Static Typing

SML is a statically typed language, meaning that all typing rules are applied before
the program is ever run.

Def We say that a piece of code or a program which obeys all the typing rules
type-checks, or is well-typed.

Key Ill-typed programs are not evaluated.

Brandon Wu Prologue 16 May 2023 40 / 48



4 - Declarations



Function Declarations

We’ve so far discussed types and values, but we haven’t introduced the machinery
we need to actually work in a programming language! We need some way to declare
variables and functions.
In SML, we can declare functions using the fun syntax:

fun double (n : int) : int = n + n

This comprises of a few parts:
• the fun keyword that signals the start of the declaration
• the name of the function (double)
• the arguments to the function, annotated with type (n and int)
• the return type of the function (int)
• the body of the function n + n

Brandon Wu Prologue 16 May 2023 42 / 48



Function Application

To use the function we just defined, we have to apply it. This is done via placing the
function expression directly adjacent to the argument that it is meant to take in.

So for instance, instead of writing double (2) like we would in some programming
languages, we would write double 2. This is known as function application.

So we would have that double 2 =⇒ 4.

Brandon Wu Prologue 16 May 2023 43 / 48



Typing for Functions

Since double is a function which takes in an int and returns an int, we would
refer to it as having the function type int -> int.

How do we know that double : int -> int, however? Is it just because we
annotated it as taking in int and returning int?

That isn’t true, however, because the following declaration fails to type-check, and
thus will not be executed by Standard ML:

fun double (n : int) : string = n + n

In reality, SML is checking the type of double to make sure that it is consistent with
the annotations that we state.

Brandon Wu Prologue 16 May 2023 44 / 48



Typing for Functions

fun double (n : int) : int = n + n

To check the type of double , SML will take our word for what the input type of n is,
here.

It will then try to produce a type for the body of the function, given that n : int. If
that matches up with the return type as stated, then the function is well-typed.

In this case, we see that if n : int, then by our previous logic n + n : int,
which matches the return type. When we change it to string however, that
becomes different, so the declaration is rejected as ill-typed.

Brandon Wu Prologue 16 May 2023 45 / 48



Typing for Function Application

How do we know that double 2 is well-typed?

Def The typing rule for function application is that e1 e2 : t2 iff
e1 : t1 -> t2 and e1 : t1, for some types t1, t2.

In essence, this is saying applying a function only returns a type t2 if the function
has type t1 -> t2, and it is given an input of type t1.

In this case we know double 2 : int if double : int -> int and 2 : int.
We know double : int -> int, because of our previous reasoning.
We also know that 2 : int.

So double 2 : int, the return type of double .

Brandon Wu Prologue 16 May 2023 46 / 48



Variable Declarations

Now we need to cover how to declare variables. The key word of interest here is
val.

val favoriteCourseNumber : int = 150

It functions similarly to a function declaration, but there are now no arguments to
type-annotate.

We will have more to say about variable declarations in the next lecture.

Brandon Wu Prologue 16 May 2023 47 / 48



Thank you!


	Administrivia
	The Philosophy of Functional Programming
	Types, Expressions, Values
	Declarations

