

Lesson Plan

1 Type Inference

2 Parametric Polymorphism

3 Parameterized Datatypes

4 Polymorphic Sorting

Brandon Wu Polymorphism 01 January 2020 2 / 60

Last time

Last time, we discussed the tree method and how it can be used to solve more
difficult recurrences, that make multiple recursive calls.

We also learned how to analyze complexity of a function on trees via depth as
opposed to the number of nodes. We saw that this obtained different bounds, but
through reasoning about the relationship between nodes and depth, ultimately
came out to be the same .

We then explored sorting, and wrote a terse implementation of merge sort, and
then analyzed its work and span.

Brandon Wu Polymorphism 01 January 2020 3 / 60

1 - Type Inference

An Overflow of int

You may have noticed that we’ve been using ints all over the place.

We’ve so far dealt with lists of ints, trees of ints, and sorting ints. We’ve been
focusing on things of type int quite a bit, but we haven’t had to! We might be
interested in data structures which hold things which are not just integers, for
instance.

If we did that, however, we would need to redo every lecture that we’ve done up to
this point, because everything we’ve discovered has only been for the type int! If
only there were some way of doing things in a generic way, for any type.

Brandon Wu Polymorphism 01 January 2020 5 / 60

The length function

Recall the length function we defined long ago:
fun length ([] : int list) : int = 0

| length (x::xs) = 1 + length xs

This only works on lists of type int, but there’s no reason for it to! We could have
easily written it as:

fun length ([] : int list) : int = 0
| length (_::xs) = 1 + length xs

and never inspected any specific element of the list at all.

Brandon Wu Polymorphism 01 January 2020 6 / 60

Type Annotations Types Guide Structure

We have been type annotating our code the entire semester. In keeping with our Big
Idea that Types Guide Structure, we want to make sure that the structure of our
code is easily described via types.

This is often a lot of work, however! We know that SML is able to automatically
determine whether an expression is ill-typed – that is, if there types are used in a
contradictory way. Is SML also able to determine the type of programs
automatically?

The answer: It is!

Brandon Wu Polymorphism 01 January 2020 7 / 60

Type Inference

SML performs type inference, which is the automatic derivation of types for all
expressions. When this process fails, the program is rejected as ill-typed.1

The type inference algorithm is basically a straightforward recursive algorithm on an
expression. When we encounter a function that we know to have a certain type, we
assume that it type-checks, and then recurse to see if there are any contradictions.

1You might say that the SML type system has type expression -> typ option .
Brandon Wu Polymorphism 01 January 2020 8 / 60

Type Inference: An Example

Suppose we are inferring a type for the expression 2 + 3.

Since this is just the application of a function + : int * int -> int, we assume
it has type int.

We then check whether 2 : int, which it does, so no contradiction.

We then check whether 3 : int, which it does, so no contradiction.

So 2 + 3 type-checks, and additionally, has type int.

Brandon Wu Polymorphism 01 January 2020 9 / 60

Type Inference: Functions

It’s more interesting when we get into examples with functions!

When a function accepts an argument, it has a yet-unknown type. When inferring
the type of such a variable, the type inference algorithm must use the context of
how the variable is used to determine the variable’s type.

For instance, consider the expression fn x => x + 1.

Upon entering the body of the expression, we assign x a yet-undetermined type,
and type-check the application of + to the tuple (x, 1).

In this instance, + : int * int -> int, so it must be the case that x : int!
Thus, we have resolved a type for the variable x.

Brandon Wu Polymorphism 01 January 2020 10 / 60

Type Inference: Contradiction

What about a function like fn x => (x + 1, x ^ "1")?

Here, we again assign x an unknown type, and then proceed to type-check the
body of the function. We see the expression x + 1, and by the same reasoning as
earlier, conclude that x : int.

However, we then type-check x ^ "1", and conclude that, since
^ : string * string -> string , it must be the case that x : string . This
is a contradiction, because we previously concluded x : int! So type-checking
fails.

Brandon Wu Polymorphism 01 January 2020 11 / 60

Type Inference: Ambiguity

The previous example showed an expression that was ill-typed, due to too much
information being specified. We added enough constraints onto the type of x that
we couldn’t possibly satisfy them all!

What happens if we specify too few constraints?

What’s the type of the expression fn x => x?

Brandon Wu Polymorphism 01 January 2020 12 / 60

2 - Parametric Polymorphism

Type Variables

Before, we talked about the type inference algorithm as assigning an "unspecified
type" to each variable, that could be later solved for.

We are now ready to give a name to that type!

Def A type variable is the type given to an expression whose type is not known.
The role of the type inference algorithm is to solve for what that type variable’s type
should be.

A type variable is named such because it is a variable, ranging over types. In the
same way that variables as introduced by lambda expressions are meant to be
substituted with values, type variables as introduced by the type inference
algorithm are meant to be substituted with types.

Brandon Wu Polymorphism 01 January 2020 14 / 60

Type Variables

These type variables are denoted via a backtick before a letter, like ’a, and called
their Greek letter equivalent (in this case, alpha).

Before, we asked about what the type of fn x => x is. Here, we enforce zero
constraints on the type of x, so its type remains the same as it was originally
initialized to, which is a type variable, in this case ’a.

So we say that this function has type ’a -> ’a (or "alpha to alpha").

Brandon Wu Polymorphism 01 January 2020 15 / 60

Polymorphism

What’s the point of having such a function? Usually, we want to make sure that our
code has a single, specified type, so that we don’t make mistakes! What gives?

The reason why this is useful is for code reuse.

Def We say that an expression has a polymorphic type if it has a type that
contains type variables.

Another name for the function we just defined, fn x => x, is the identity function.
It is a polymorphic function.

Brandon Wu Polymorphism 01 January 2020 16 / 60

Code Reuse

Suppose we are interested in using the identity function. If we previously defined it
with type annotations, we would have something like:

fun identityInt (x : int) : int = x

and we would only be able to use it like identityInt 150, but
identityInt "hi" would be ill-typed.

This is really really annoying, because now we have to go and define one for every
single type that we’re interested in.

fun identityString (x : string) : string = x
fun identityBool (x : bool) : bool = x

Brandon Wu Polymorphism 01 January 2020 17 / 60

Code Reuse

The key observation is that the actual contents of the function are the same. They
all look like some form of fn x => x.

So why should we need to restate this definition for every single type? We should
be able to use the actual code that we wrote, irrespective of type annotation, if the
meaning of the code is agnostic to type.

The key insight to maintaining type safety is a variant of polymorphism called
parametric polymorphism.

Brandon Wu Polymorphism 01 January 2020 18 / 60

Parametric Polymorphism

Def We say a type is parametrically polymorphic if it is parameterized by one or
more type variables, which are instantiated at a later time by substitution.

So for instance, the type ’a -> ’a is parametrically polymorphic, because it is
parameterized by the type variable ’a. This means that we can write:

fun identity (x : ’a) : ’a = x
val x : int = identity 150
val y : string = identity "hi"

Brandon Wu Polymorphism 01 January 2020 19 / 60

Generic Code

This allows a notion of generic code, which is code that can be used generically in
its type!2 Essentially, the type ’a -> ’a means "for all types a, a -> a".

In the previous example, identity is bound to a generic type, meaning that it can
be instantiated concretely as int -> int in the RHS of the binding to x, and as
string -> string in the other case.

In this case, we would call the two calls to identity as different instances of the
same function. They are concrete cases of a general function template, known as
identity .

2Some languages actually do call this "generics".
Brandon Wu Polymorphism 01 January 2020 20 / 60

Let-polymorphism

The specific kind of polymorphism employed by SML is known as
let-polymorphism.3

Def Let-polymorphism means that values can only be generalized as polymorphic
after their declaration site.

This doesn’t really come up, but this can happen if you’re expecting a function to be
polymorphic while you’re defining it!

3It’s not really important to know why it’s called this.
Brandon Wu Polymorphism 01 January 2020 21 / 60

Let-polymorphism

For instance, this function fails to be polymorphic:
fun identity x =

let
val _ = identity 5

in
x

end

Even though it seems like it "should" still be polymorphic, the use of identity
concretely within its own definition causes it to be typed at int -> int. It is only
after a function is defined, that it is able to be used generically.

Brandon Wu Polymorphism 01 January 2020 22 / 60

More Generic Functions

The identity function is kind of a contrived example, however. We don’t use it that
often.4

As we alluded to earlier, the length function we wrote needed not be specified at
any particular type, because we never actually look at any of the elements of the
list! We could indeed write:

fun length [] = 0
| length (x::xs) = 1 + xs

and obtain length : ’a list -> int.

4Yet.
Brandon Wu Polymorphism 01 January 2020 23 / 60

Polymorphic Playtime

The process by which we determine what the type of a function without
annotations is, is an entirely predictable one.

We can try to do it ourselves. Suppose we have the following function:
fun foo (a, b, c, d) =

if a then
(b + 1, c)

else
d ()

How are we going to determine the type of this function? First, we start off with all
of the types of our arguments as unknowns.

Brandon Wu Polymorphism 01 January 2020 24 / 60

Polymorphic Playtime

fun foo (a, b, c, d) =
if a then

(b + 1, c)
else

d ()

a 7→ ’a

b 7→ ’b

c 7→ ’c

d 7→ ’d

But, we notice that a is the subject of an if, meaning that it must be of type bool!

Brandon Wu Polymorphism 01 January 2020 25 / 60

Polymorphic Playtime

fun foo (a, b, c, d) =
if a then

(b + 1, c)
else

d ()

a 7→ bool

b 7→ ’b

c 7→ ’c

d 7→ ’d

We then see that we use b by adding 1 to it, implying it must be of type int.

Brandon Wu Polymorphism 01 January 2020 26 / 60

Polymorphic Playtime

fun foo (a, b, c, d) =
if a then

(b + 1, c)
else

d ()

a 7→ bool

b 7→ int

c 7→ ’c

d 7→ ’d

We also apply the variable d as a function, given an input of type unit . We don’t
know the output type, though, so let’s just make it another type variable ’e.

Brandon Wu Polymorphism 01 January 2020 27 / 60

Polymorphic Playtime

fun foo (a, b, c, d) =
if a then

(b + 1, c)
else

d ()

a 7→ bool

b 7→ int

c 7→ ’c

d 7→ unit -> ’e

Then, because we know that the types of two branches of an if must be the same,
we conclude that (b + 1, c) must be the same type as the output type of d.

Brandon Wu Polymorphism 01 January 2020 28 / 60

Polymorphic Playtime

fun foo (a, b, c, d) =
if a then

(b + 1, c)
else

d ()

a 7→ bool

b 7→ int

c 7→ ’c

d 7→ unit -> int * ’c

Finally, this is also the return type of the function, so the ultimate type of our
function is bool * int * ’c * (unit -> int * ’c) -> int * ’c.5

5A very useful type.
Brandon Wu Polymorphism 01 January 2020 29 / 60

3 - Parameterized Datatypes

More Parametricity

We have seen that we can have types such as ’a -> ’a and ’a list -> int,
which rely on type variables. These are polymorphic types that are "pre-existing", in
the sense that we did not need to define the types of list, or the -> type
constructor.

We can also define our own types that are parameterized by other types!

Brandon Wu Polymorphism 01 January 2020 31 / 60

Parameterized Datatypes Types Guide Structure

Def A parameterized datatype is a datatype declared with a type parameter. This
defines many types, which accept a type as an input.

Note The list and option datatypes as discussed earlier in the course are
examples of parameterized datatypes!

This is the reason why lists and options can contain values of any type.

Brandon Wu Polymorphism 01 January 2020 32 / 60

Lists and Options

We can define lists and options like so:
datatype ’a list = [] | :: of ’a * ’a list

datatype ’a option = NONE | SOME of ’a

These datatype declarations are similar, in the sense that they define the ’a list
and ’a option types, which are in a sense templates for a family of types. These
can be instantiated concretely as int list, string option , and so on and so
forth.

Note The two uses of ’a in the type of :: are the same! This means it is still invalid
to write 2::[true], because 2 : int and [true] : bool list .

Brandon Wu Polymorphism 01 January 2020 33 / 60

Behind the Curtain

Finally, we see the truth! This is what we have been tiptoeing around, when
discussing [] and ::.

Previously, we had to say things like:
Def For any type t, [] : t list, and :: : t * t list -> t list .

This quantification around the type of the list’s elements, t, was all due to the type
variable in the types of [] and ::. In reality, what we could have just said was that
[] : ’a list, and :: : ’a * ’a list -> ’a list .

Brandon Wu Polymorphism 01 January 2020 34 / 60

Polymorphic Trees

We can also define polymorphic trees! Before, our trees only contained ints. But
there is no reason for that.

datatype ’a tree = Empty | Node of ’a tree * ’a * ’a tree

Now, we can have:
• Empty : ’a tree
• Node (Empty , 5, Empty) : int tree
• Node (Empty , "hi", Empty) : string tree
• Node (Empty , Empty , Empty) : ’a tree tree

Brandon Wu Polymorphism 01 January 2020 35 / 60

Polymorphic Trees, Pictorially

"v"

"l"

"i" "o"

"1"

"e" "5"

"0"

Note What the future looks like, now that we can put strings in trees.

Brandon Wu Polymorphism 01 January 2020 36 / 60

Polymorphic Types, Polymorphic Functions

The fact that we can write these polymorphic functions on lists and trees and
the like is a result of the fact that they are polymorphic types!

We can write functions which respect the structure of the type outside of the
polymorphic parts, and are still able to do useful work.

fun count Empty = 0
| count (Node (L, x, R)) = count L + 1 + count R

fun safeValOf (default , NONE) = default
| safeValOf (default , SOME v) = v

Brandon Wu Polymorphism 01 January 2020 37 / 60

Generic Values

Through these declarations, it is possible to achieve polymorphic values that are not
functions. While it may seem like type variables are only introduced by function
arguments we do not know the type of, they are really introduced by any ambiguity
in a type.

For instance, what is the type of []? We don’t have enough information to constrain
it either way, so the type is just ’a list. This means that we could write the
following code:

val l : ’a list = []
val x : int list = 1 :: l
val y : string list = "hi" :: l

The two instances of l are instantiated at int list and string list,
respectively!

Brandon Wu Polymorphism 01 January 2020 38 / 60

Generic Types

It is now no longer true that each expression has only one type.

For certain expressions like fn x => x, it could be interpreted to have multiple
types, such as int -> int, or ’a -> ’a.

To explain away this ambiguity, we will revise our interest in types to be for the
most general type for an expression.

Def The most general type for an expression is the type that every other type for
that expression is an instance of.

Brandon Wu Polymorphism 01 January 2020 39 / 60

Type Instances

We spoke briefly on how different calls to identity were instances of the main
declaration. We also define a concept of instances on types.

Def A type t1 is an instance of type t2 if t1 can be obtained from t2 by
substituting for some type variables.

So here are some examples:
• int is an instance of ’a
• int list is an instance of ’a list
• int * int is an instance of ’a * ’b
• int * bool is an instance of ’a * ’b
• ’b * ’c is an instance of ’a
• ’a list list is an instance of ’a list

Brandon Wu Polymorphism 01 January 2020 40 / 60

Type Instances, Pictorially

int * real

. . .

bool * ’b int list unit list unit tree int tree

. . . ’a * ’b ’a list ’a tree . . .

’a

Note that only the type bool * ’b has further instances, because it’s the only one
with a remaining type variable.
We say that the rest of the types are monomorphic.

Brandon Wu Polymorphism 01 January 2020 41 / 60

Most General Types

So we see that the MGT of length is ’a list -> int, because while it can be
typed as int list -> int, and string list -> int, among others, they are
all just instances of the type ’a list -> int.

All parametric polymorphism is, is choosing instances of a most general type!

Warning Be careful not to confuse being an instance of a type with amost general
type. All types are instances of ’a, but most expressions do not have MGT ’a.

Brandon Wu Polymorphism 01 January 2020 42 / 60

A Warning on Proofs

Beware the following common mistake on proofs!

Thm. length (L @ R) ∼= length L + length R

When proving this claim on length : ’a list -> int, you might be tempted to
write the following:

We proceed by structural induction on L : ’a list .

BC L = []

...

Brandon Wu Polymorphism 01 January 2020 43 / 60

Type Quantification

This will get a point deduction! The quantification is incorrect.

There is only one value of type ’a list, so how can we possibly induct on it? To
add another element would be to escape the type entirely, because that would
specify the type of the list!

The proper way to phrase the proof is:

Let t be a type. We proceed by structural induction on L : t list.

...

IH Case: L = xs, for some xs : t list. Assume ...
IS Case: L = x::xs, for some x : t. Let’s show ...

Brandon Wu Polymorphism 01 January 2020 44 / 60

Parametric Types, Parametric Proofs

When proving a claim on values of a parametric type, you are essentially writing a
proof for many types. To do this properly, you need to parameterize your proof by
an arbitary type, and then proceed with the proof. This which will end up proving
the claim for the parametric type.

Another reason why the former proof doesn’t work is that there are no values of
type ’a. This would entail a value which could be instantiated at any type, which
obviously shouldn’t exist!

Brandon Wu Polymorphism 01 January 2020 45 / 60

A Comment on Polymorphism Types Guide Structure

The conceptual takeaway is that a polymorphic type is a family of types,
parameterized by the input type. It is a schema that defines many other types.

A function with a polymorphic type is a family of functions, all with the same
implementation, but each with a different type depending on its usage.

A proof on a function with a polymorphic type is a family of proofs, one for each
input type that the function could be instantiated at. We essentially are proving
something for each function in the family of functions.

Brandon Wu Polymorphism 01 January 2020 46 / 60

4 - Polymorphic Sorting

Generic Sorting

We’ve now addressed our over-reliance on ints in the context of functions like
length and identity . Let’s turn our attention towards a more classic problem,
though.

We previously discussed sorting, but only on integers! Let’s abstract and try to
create a generic sorting function. We’d like a function:

sort : ’a list -> ’a list
REQUIRES: true
ENSURES: sort L is a sorted permutation of L

Brandon Wu Polymorphism 01 January 2020 48 / 60

On Sorting

...But is that even a well-specified problem? What would it mean to have a function
of type ’a list -> ’a list?

Recall that if we impose any constraints on what the type of the elements of the list
are, then it will no longer generalize polymorphically. We have to somehow sort
elements of a list without ever looking at what any given element is.

It turns out, this function is impossible to write. Not in the least for the reason that
"sorted" is a relative concept. We have an idea of a canonical sorting for integers –
by magnitude. But what if we wanted to sort integers in reverse? Or modulo 12?

Brandon Wu Polymorphism 01 January 2020 49 / 60

Comparison Functions

All these notions involve what is called a comparison function.
Def We say that a function f : t * t -> order is a comparison function if it
is total, and defines a total order
Def A total order is a binary relation that essentially relates a bunch of things
which can be ordered on a line. So a total order f should not have any cycles.
So we might define these comparison functions as:

val revIntCompare =
fn (x, y) => case Int.compare (x, y) of

LESS => GREATER
| GREATER => LESS
| EQUAL => EQUAL

val mod12Compare =
fn (x, y) => Int.compare (x mod 12, y mod 12)

Brandon Wu Polymorphism 01 January 2020 50 / 60

The Meaning of Sorted Recursive Problems, Recursive Solutions

We can, relative to a comparison function cmp : t * t -> order , recursively
define what it means for a list to be sorted with respect to that comparison function.

Def We say that a list L : t list is cmp-sorted if it has the following properties:
• L ∼= []
• L ∼= [x]
• L ∼= x::y::xs, where cmp (x, y) ∼= LESS or EQUAL , and y::xs is

cmp-sorted.

Brandon Wu Polymorphism 01 January 2020 51 / 60

Sorting, Relatively

To be able to sort relatively, we will adjust the type of our sort function, slightly.

Now, instead of being of type ’a list -> ’a list, we will add a parameter to
our sort function, which is a comparison function by which to sort.

But wait, why can we take in a comparison function? Can functions be passed in as
arguments?

Brandon Wu Polymorphism 01 January 2020 52 / 60

Functions are Values

This might come as a surprise6, but functions are values.

We’ve seen it, by binding lambda expressions in val declarations, which is an
equivalent form to the fun declarations we’ve been using so far.

Another consequence of this is the fact that functions are first-class citizens. This
means that they can be bound to values, passed into functions, and returned from
functions, just like any other value.

6The same way that an annual tuition increase is a surprise.
Brandon Wu Polymorphism 01 January 2020 53 / 60

Functions are Values

We will discuss this more in-depth next lecture, but for this lecture, we will exploit
the fact that functions can be passed in as arguments, to write our sort function in
a way that it is parameterized by a comparison function.

Essentially, what the sort function does, depends on what the comparison function
is!

Brandon Wu Polymorphism 01 January 2020 54 / 60

Sorting, By Comparison

sort : (’a * ’a -> order) * ’a list -> ’a list
REQUIRES: true
ENSURES: sort (cmp , L) is a cmp-sorted permutation of L

Let’s implement this via our old definition of msort .

Brandon Wu Polymorphism 01 January 2020 55 / 60

msort , before

fun split [] = []
| split [x] = [x]
| split (x::y::xs) =

let
val (A, B) = split xs

in
(x::A, y::B)

end

fun merge ([], R) = R
| merge (L, []) = L
| merge (x::xs , y::ys) =

if x < y then
x :: merge (xs , y::ys)

else
y :: merge (x::xs , ys)

fun msort [] = []
| msort [x] = [x]
| msort L =

let
val (A, B) = split L

in
merge (msort A, msort B)

end

Brandon Wu Polymorphism 01 January 2020 56 / 60

A Generic msort

fun split [] = []
| split [x] = [x]
| split (x::y::xs) =

let
val (A, B) = split xs

in
(x::A, y::B)

end

fun merge (cmp, ([], R)) = R
| merge (cmp, (L, [])) = L
| merge (cmp, (x::xs, y::ys)) =

case cmp (x, y) of
LESS => x :: merge (cmp, (xs , y::ys))

| _ => y :: merge (cmp, (x::xs, ys))

fun msort (cmp, []) = []
| msort (cmp, [x]) = [x]
| msort (cmp, L) =

let
val (A, B) = split L

in
merge (cmp, (msort (cmp, A), msort (cmp, B)))

end

Brandon Wu Polymorphism 01 January 2020 57 / 60

Finishing Off sort

All we did was pass the cmp function through, and then change a single place
(where we used to do the integer comparison), instead using the provided
comparison function. The code easily generalizes!

Now, we can define our sort function simply as:

fun sort (cmp : ’a * ’a -> order , L : ’a list) : ’a list =
msort (cmp , L)

Now we can sort generically! For instance, we have:

Brandon Wu Polymorphism 01 January 2020 58 / 60

sort Examples

• sort (Int.compare , [2, 3, 1]) ↪→ [1, 2, 3]
• sort (String.compare , ["a", "ab", "b"]) ↪→ ["a", "b", "ab"]
• sort revIntCompare [1, 2, 3] ↪→ [3, 2, 1]

Brandon Wu Polymorphism 01 January 2020 59 / 60

Thank you!

	Type Inference
	Parametric Polymorphism
	Parameterized Datatypes
	Polymorphic Sorting

