

Lesson Plan

1 Analyzing a Tree via Depth

2 The Tree Method

3 A Better inord

4 Sorting

Brandon Wu Sorting and Parallelism 06 June 2023 2 / 62

Last time

Last time, we reviewed the idea of asymptotic analysis, which is the analysis of the
performance of programs, as the input size grows.

We learned that for recursive, functional programs, we could write mathematical
recurrences that described the work of the code, and that could be solved via the
unrolling method to obtain a closed form, and a bound.

We also learned that, by assuming we had infinitely many processors, we could
obtain recurrences that measured the span of the code, or the amount of time
using parallelism. We saw that this gave performance benefits for treesum on
balanced trees.

Brandon Wu Sorting and Parallelism 06 June 2023 3 / 62

1 - Analyzing a Tree via Depth

Measuring a Tree (again)

Before, we discussed how we could use the number of nodes in a tree as the input
size, and obtain two span recurrences for treesum – O(n) in the imbalanced case,
and O(log n) in the balanced case.

That’s not the only way to measure a tree, though.1 The other way is that we could
use the depth of the tree, which is the longest path through the tree to get to the
bottom.

fun treesum (Empty : tree) : int = 0
| treesum (Node (L, x, R)) = treesum L + x + treesum R

Let’s try it!

1You can also use a tape measure.
Brandon Wu Sorting and Parallelism 06 June 2023 5 / 62

Tree Recurrence: Depth

Where d is the depth of the tree T, in the expression treesum T:

Streesum(0) = c0

Streesum(d) = max(Streesum(dL), c1, Streesum(dR)) + c2
2

Again, we don’t know how deep the tree is in the left and right subtrees – our
recurrence depends on the quantities dL and dR , respectively.

We find ourselves in the same situation as before, and we’ll solve it the same way,
by assuming the worst case. In the worst case, the tree is just a spine, so the depth
of the left is d− 1, and the depth of the right is 0.

2Recall that the c1 term is obtained via the constant amount of work involved in the computation of
x. It’s already a value, but there is some constant work associated, and we do take the max over it, in
case it unexpectedly takes a really long time.3

3It doesn’t.
Brandon Wu Sorting and Parallelism 06 June 2023 6 / 62

Tree Recurrence: Depth (Unbalanced)

Case The span of treesum on an unbalanced tree, in terms of the depth d.

Streesum(d) = max(Streesum(d− 1), c1, Streesum(0)) + c2

Streesum(d) = Streesum(d− 1) + c2

If we exchange d for n, we’ve seen this recurrence before. This solves to O(d).

Streesum(d)

= Streesum(d− 1) + c2

= Streesum(d− 2) + c2 + c2

= ...

=

d∑
i=1

c2 + c0

= d · c2 + c0

Brandon Wu Sorting and Parallelism 06 June 2023 7 / 62

Tree Recurrence: Depth (Balanced)

Case The span of treesum on a balanced tree, in terms of the depth d.

Then, the left subtree still has depth d− 1, as does the right subtree.

So:
Streesum(d) = max(Streesum(d− 1), c1, Streesum(d− 1)) + c2

Streesum(d) = Streesum(d− 1) + c2

What gives?? This is the same recurrence! Span is O(d) in both the unbalanced and
balanced cases.

Brandon Wu Sorting and Parallelism 06 June 2023 8 / 62

On Depth and Balance

This might be counterintuitive, because we expect a better bound, but it makes
sense if you remember the task dependency graphs we discussed earlier.

In a task dependency graph, the cost of executing some amount of tasks in parallel
is just the longest path through the graph, or tree. The length of the longest path
through a tree is just d, the depth of the tree, because a tree has the structure of a
dependency graph that is just the same tree!

We can relate it back to our previous bounds, O(n) and O(log n), for unbalanced and
balanced trees, in the number of nodes n, however.

Brandon Wu Sorting and Parallelism 06 June 2023 9 / 62

On Depth and Balance Programmatic Thinking is Mathematical Thinking

Key In an unbalanced tree, the depth d is just the number of nodes n.

So in the unbalanced case, an O(d) bound is the same as O(n), which is the same
bound we received earlier.

What is the number of nodes in a balanced tree of depth d though? Well, each level
has double the nodes of the previous, so it’s equal to

1 + 2 + 4 + ...+ 2d

Key There’s a lovely geometric proof that shows that this is in O(2d).

So in a balanced tree, n ≈ 2d, so our previous bound is O(log n) = O(log(2d)) = O(d).
We get the same thing either way, so this is perfectly consistent!

Brandon Wu Sorting and Parallelism 06 June 2023 10 / 62

A Picture Proof

n

n
2

n
4

n
8

. . .

We can see that if we do an infinite sum of n+ n
2 + n

4 + ..., the sum never surpasses
the area of the square, which is just twice of the left half, otherwise known as 2n.
Since the finite sum 1 + 2 + 4 + ...+ n is definitely smaller than this, we are fine to
conclude that it is on the order of O(n).

Brandon Wu Sorting and Parallelism 06 June 2023 11 / 62

Nodes or Depth

Ultimately, if you do the math and reason it out, you find that getting bounds in
terms of depth and nodes looks different, but ultimately say the same thing.

Whichever is "easier" is up to your discretion. Both are valid ways of solving a
recurrence.4

Span of treesum Nodes Depth
Balanced O(log n) O(d)

Unbalanced O(n) O(d)

4We will usually specify whenever we have a particular way we want to see you solve it, which is
often.

Brandon Wu Sorting and Parallelism 06 June 2023 12 / 62

2 - The Tree Method

Ordering a Tree

Recall our notion of an traversal on a tree, which produces a list from a tree by
traversing the tree in some prescribed order.

We are interested in inorder traversal, which traverses a tree the same way that
someone would traverse it by reading from left-to-right.

fun inord (Empty : tree) : int list = []
| inord (Node (L, x, R)) = inord L @ (x :: inord R)

Brandon Wu Sorting and Parallelism 06 June 2023 14 / 62

inord , Naively

When you see recursive calls being given as arguments to append, you should
double-check, because something fishy is probably going on.

But, better than thinking about it, we can mathematically solve for the performance!
Let’s assume a balanced tree, and solve for the work of this function, in terms of the
nodes of the tree.

Case The work of inord on a balanced tree.

Where n is the number of nodes in the input tree:

Winord(0) = c0

Winord(n) = c1 +W@

(n
2

)
+ 2 ·Winord

(n
2

)
(because we append a list of half the size, and compute inord recursively twice)

Brandon Wu Sorting and Parallelism 06 June 2023 15 / 62

Solving inord

So we have:

Winord(n)

= c1 +W@

(n
2

)
+ 2 ·Winord

(n
2

)
= c1 +O(n) + 2 ·Winord

(n
2

)
= c1 +O(n) + 2 ·

(
c1 +O

(n
4

)
+ 2 ·Winord

(n
4

))
= c1 +O(n) + 2 ·

(
c1 +O

(n
4

)
+ 2 ·

(
c1 +O

(n
8

)
+ 2 ·Winord

(n
8

)))
= ... =???

This is... messy.5

5Life is, sometimes.
Brandon Wu Sorting and Parallelism 06 June 2023 16 / 62

Unrolling in the Deep

Sometimes, unrolling is messy. Sometimes, like in length , we only get one extra
term per "unrolling", and so it’s not hard to solve by just finding the pattern.

In the case of functions on trees, this usually isn’t the case! We actually get two
terms per unrolling, which quickly becomes four by the next unrolling, and so on.
This is much harder to eyeball.

We will employ a new technique of solving for such recurrences, using the tree
method, instead of the unrolling method.

Brandon Wu Sorting and Parallelism 06 June 2023 17 / 62

The Tree Method Recursive Problems, Recursive Solutions

The tree method gets its name, from noticing that the amount of recursive calls
done by a function like inord induces a tree structure.

We see that calling inord on a tree with n nodes causes two calls, to inord with n
2

nodes (in the balanced case).

So let’s draw a tree representing the computation of inord T, with nodes
annotated with the size of the input at each call, with edges indicating recursive
calls:

n

n
2

n
2

Brandon Wu Sorting and Parallelism 06 June 2023 18 / 62

Tree Call Structure

But those two calls to inord have their own recursive calls, which have size n
4 .

So our "call tree" expands to:
n

n
2

n
2

n
4

n
4

n
4

n
4

0 0 0 0 0 0. . .

.

Brandon Wu Sorting and Parallelism 06 June 2023 19 / 62

Tree Call Structure Programmatic Thinking is Mathematical Thinking

We can think of the following recurrence as three parts:

Winord(n) = c1 +W@(
n

2
) + 2 ·Winord(

n

2
)

• the nonrecursive work, W@(
n
2) + c1

• the recursive work, 2 ·Winord(
n
2)

• for a given input size, which is n

With respect to the call tree, the nonrecursive work is the work present at each
node, but the recursive work is taken care of by all its children.

So, if we sum all the nonrecursive work in each node, we’ll get the work done by the
entire function.

Brandon Wu Sorting and Parallelism 06 June 2023 20 / 62

The Work of a Node

Winord(n) = c1 +W@(
n

2
) + 2 ·Winord(

n

2
)

To do this, we’ll need to somehow figure out the nonrecursive work done by each
node. This is O(n) + c1 for a node with size n, except each node has a different size!

In addition, there’s a differing number of nodes of each size, since there’s 2 of size
n
2 , and 4 of size n

4 , and so on.

This isn’t easier at all!

Brandon Wu Sorting and Parallelism 06 June 2023 21 / 62

Get On My Level

The innovation comes from noticing that the nonrecursive work at each level of the
tree might come out to the same thing.

If the work at each level was the same, then we could just multiply that quantity by
the height of the tree, which is log n, the number of times we can recursively call
inord by halving the input.

Let’s try it out.

Brandon Wu Sorting and Parallelism 06 June 2023 22 / 62

inord : Tree Call Structure

n | c2 · n
2

n
2 | c2 ·

n
4

n
2 | c2 ·

n
4

n
4 | c2 ·

n
8

n
4 | c2 ·

n
8

n
4 | c2 ·

n
8

n
4 | c2 ·

n
8

0 | c0 0 | c0 0 | c0 0 | c0 0 | c0 0 | c0

= 20 · c2 · n
2 = c2 · n

2

= 21 · c2 · n
4 = c2 · n

2

= 22 · c2 · n
8 = c2 · n

2

= n
2 · c0 = c0 · n

2
. . .

.

where the green denotes the size of the input at a node, and the purple denotes the
amount of nonrecursive work at that call

Brandon Wu Sorting and Parallelism 06 June 2023 23 / 62

The Tree Method, Concluded

Let the level of a tree denote how far we are from the root. So the root is at level 0,
and there are two nodes at level 1, and so on.
Number of levels log n, the number of times we can divide the input size by 2

Work per node at level i n

2i+1
c2

Number of nodes at level i 2i

So to solve for our cumulative work at level i, we multiply the number of nodes and
work per node:

2i ·
(n

2i+1
c2

)
=

n

2
· c2

So the work at level i, cumulatively, is the same! What’s more, it’s in O(n). There’s
log n levels, so we ultimately come out with a bound of O(n log n). 6

6There are several things we elided to come to this bound. We decided to count the nonrecursive
work at each node as the work of asymptotically dominating @ and we ignored the c0 leaf terms,
because they are ultimately dominated by the sum of the other layers. We only care about getting to
the right asymptotic bound, so we can make things disappear if they aren’t relevant.

Brandon Wu Sorting and Parallelism 06 June 2023 24 / 62

The inord Matrix

Complexity of inord Work Span
Balanced O(n log n) TBD

Unbalanced TBD TBD

So now we’ve filled in one entry for our matrix of work and span for the inord
function, in the balanced and unbalanced case.

Let’s quickly reason about the unbalanced case for the work.

Brandon Wu Sorting and Parallelism 06 June 2023 25 / 62

inord : Work (Unbalanced)

Case The work of inord on an unbalanced tree.

The worst case would be if the subtree L had n− 1 nodes, in other words a left
spine. This is because we would have to do an append of n− 1 elements.

Where n is the number of nodes in the input tree:

Winord(0) = c0

Winord(n) = c1 +W@(n− 1) +Winord(n− 1) +Winord(0)

This looks very similar to our rev recurrence from last lecture. We will skip the
derivation and conclude that the complexity is O(n2).

Brandon Wu Sorting and Parallelism 06 June 2023 26 / 62

inord : Span (Balanced)

Case The span of inord on a balanced tree.

fun inord (Empty : tree) : int list = []
| inord (Node (L, x, R)) = inord L @ (x :: inord R)

Here, we can do the calls to inord L and inord R in parallel, so we get the same
recurrence as the balanced work case, but with only one recursive call.

Where n is the number of nodes in the input tree:

Sinord(0) = c0

Sinord(n) = max
(
Sinord

(n
2

)
, c1, Sinord

(n
2

))
+ S@

(n
2

)
+ c2

Brandon Wu Sorting and Parallelism 06 June 2023 27 / 62

inord : Span (Balanced)

Sinord(n)

= max
(
Sinord

(n
2

)
, c1, Sinord

(n
2

))
+ S@

(n
2

)
+ c2

= Sinord

(n
2

)
+

n

2
c1 + c2

= Sinord

(n
4

)
+

n

4
c1 + c2 +

n

2
c1 + c2

= ...

=

logn∑
i=1

(n

2i
c1

)
+ log n · c2 +

n

2
c0

The first term dominates, because it’s (1 + 2 + 4 + 8 + ...+ n
2)c1, so we get O(n).

Brandon Wu Sorting and Parallelism 06 June 2023 28 / 62

The inord Matrix

Complexity of inord Work Span
Balanced O(n log n) O(n)

Unbalanced O(n2) O(n2)

We leave it as an exercise to the reader that the span of the unbalanced inord
case is O(n2).

Recall that appending recursive calls typically denotes something fishy. Let’s try to
think and see if we can eliminate that, in favor of a better work complexity than
O(n log n).

Brandon Wu Sorting and Parallelism 06 June 2023 29 / 62

3 - A Better inord

A Better inord

Let’s do inord again, but this time with an accumulator argument. Let’s try to avoid
using @ with a recursive call.

fun inord ’ (Empty : tree , acc : int list) = acc
| inord ’ (Node (L, x, R), acc) =

inord ’ (L, x :: inord ’ (R, acc))

Theoretically, the complexity should be better. Let’s figure it out!

Brandon Wu Sorting and Parallelism 06 June 2023 31 / 62

inord ’: Work (Balanced)

Case The work of inord ’ on a balanced tree.

Where n is the number of nodes in T in the expression inord ’ (T, L):

Winord ’(0) = c0

Winord ’(n) = 2 ·Winord ’

(n
2

)
+ c1

We get two calls to Winord ’

(n
2

)
, because we first compute inord ’(R, acc), and

then pass that in as acc ’ to inord ’ (L, x :: acc ’).

In either case, the size of the tree being called on is roughly half.

Brandon Wu Sorting and Parallelism 06 June 2023 32 / 62

inord ’: Work (Balanced)

So we solve to:

= Winord ’(n)

= 2 ·Winord ’(
n

2
) + c1

= 4 · (Winord ’(
n

4
) + c1) + c1

= ...

Same issue as before, now we have two recursive calls at each unrolling. Better to
solve this with the tree method!

Brandon Wu Sorting and Parallelism 06 June 2023 33 / 62

inord ’: Tree Method

Winord ’(n) = 2 ·Winord ’(
n

2
) + c1

Number of levels log n

Work per node at level i c1

Number of nodes at level i 2i

So then our cumulative work at level i is just the product of the number of nodes at
level i and the work per node at level i, so we get 2ic1.

So our summation looks like
logn∑
i=0

2ic1 = c1

logn∑
i=0

2i

Brandon Wu Sorting and Parallelism 06 June 2023 34 / 62

inord ’: Tree Method

logn∑
i=0

2ic1 = c1

logn∑
i=0

2i

This expands to a term like:
c1(1 + 2 + 4 + ...+ n)

where we know the inner term to be in O(n). So ultimately, our bound is O(n). That’s
a logarithmic improvement over inord !

Brandon Wu Sorting and Parallelism 06 June 2023 35 / 62

inord ’: Work (Unbalanced)

Case The work of inord ’ on an unbalanced tree.

fun inord ’ (Empty : tree , acc : int list) = acc
| inord ’ (Node (L, x, R), acc) =

inord ’ (L, x :: inord ’ (R, acc))

Then we would get:
Winord ’(0) = c0

Winord ’(n) = Winord ’(n− 1) +Winord ’(0) + c1

By analogy, we’ve seen this recurrence before. This solves to

Winord ’(n) = Winord ’(n− 1) + c0 + c1

which is in O(n). So we do the same amount of work.

Brandon Wu Sorting and Parallelism 06 June 2023 36 / 62

inord ’: Span

fun inord ’ (Empty : tree , acc : int list) = acc
| inord ’ (Node (L, x, R), acc) =

inord ’ (L, x :: inord ’ (R, acc))

Now finally, let’s do the span analysis. Let’s assume the best case, which is a
balanced tree.

Case The span of inord ’ on a balanced tree.

Sinord ’(0) = c0

Sinord ’(n) = 2 · Sinord ’(
n

2
) + c1

Brandon Wu Sorting and Parallelism 06 June 2023 37 / 62

inord ’: Span

fun inord ’ (Empty : tree , acc : int list) = acc
| inord ’ (Node (L, x, R), acc) =

inord ’ (L, x :: inord ’ (R, acc))

What gives? We still have two calls to Sinord ’

(n
2

)
, even though we usually get to

take the max of them.

The reason is because there is a data dependency between the two calls to
inord ’. The call to inord ’(R, acc) is being given as an argument to the other,
meaning that the second call cannot be executed until the first finishes!

So our span bound ends up still being O(n). This holds in the unbalanced case too.7

7Exercise, reader, etc etc.
Brandon Wu Sorting and Parallelism 06 June 2023 38 / 62

A Matrix Comparison

Complexity of inord Work Span
Balanced O(n log n) O(n)

Unbalanced O(n2) O(n2)

Complexity of inord ’ Work Span
Balanced O(n) O(n)

Unbalanced O(n) O(n)

Brandon Wu Sorting and Parallelism 06 June 2023 39 / 62

4 - Sorting

Sorting

We’ve now discussed trees and lists in detail. We’ve seen how we can analyze the
performance of functions on these data structures, which cover a wide variety of
classic computer science problems.

We will now turn to one of the most classic problems of all in computer science:
sorting a list of integers.8

8Second only to fixing your parents’ printer.
Brandon Wu Sorting and Parallelism 06 June 2023 41 / 62

Insertion

There are a variety of sorting algorithms that have been invented. We’re going to try
our hand at implementing a classic one – insertion sort.

Insertion sort works via repeatedly inserting an element into an already-sorted list.
By doing this for every element in the list, we will eventually sort the entire list.

ins : int * int list -> int list
REQUIRES: L is sorted
ENSURES: ins (x, L) is a sorted permutation of x::L

Brandon Wu Sorting and Parallelism 06 June 2023 42 / 62

Insert Implementation

Let’s implement the insertion function:
fun ins (x : int , [] : int list) : int list = [x]

| ins (x, y::ys) =
if x < y then

x::y::ys
else

y :: ins (x, ys)

Brandon Wu Sorting and Parallelism 06 June 2023 43 / 62

Insertion Sort

Now we can proceed to defining our sorting function!

insort : int list -> int list
REQUIRES: true
ENSURES: insort L is a sorted permutation of L

fun insort ([] : int list) : int list = []
| insort (x::xs) = ins (x, insort xs)

How simple!

Brandon Wu Sorting and Parallelism 06 June 2023 44 / 62

Insertion Sort: Work Analysis

fun ins (x : int , [] : int list) : int list = [x]
| ins (x, y::ys) =

if x < y then
x::y::ys

else
y :: ins (x, ys)

We see that insertion sort admits a very simple implementation in SML.
Now, let’s analyze it!
Where n is the length of the list L in the expression ins (x, L):

Wins(0) = c0

Wins(n) = Wins(n− 1) + c1 = ... = O(n)

Brandon Wu Sorting and Parallelism 06 June 2023 45 / 62

Insertion Sort: Work Analysis

fun insort ([] : int list) : int list = []
| insort (x::xs) = ins (x, insort xs)

Now, if we analyze insort , we get:

Where n is the length of the list L in the expression insort L:

Winsort(0) = c0

Winsort(n) = Winsort(n− 1) +Wins(n− 1) + c1

where the second equation is because the length of insort xs is n− 1, since it’s
the same length as xs.

Brandon Wu Sorting and Parallelism 06 June 2023 46 / 62

Insertion Sort: Work Analysis

Now we solve:

= Winsort(n)

= Winsort(n− 1) +Wins(n− 1) + c1

= Winsort(n− 1) + c2 · (n− 1) + c1

= Winsort(n− 2) + c2 · (n− 2) + c1 + c2 · (n− 1) + c1

= ...

= c2 · (1 + 2 + 3 + ...+ (n− 1)) + c1 · n
= O(n2)

So insertion sort is quadratic time, which is expected.

Brandon Wu Sorting and Parallelism 06 June 2023 47 / 62

Insertion Sort: Span Analysis?

Unfortunately, there is no real span analysis to be had here. On a list, the amount of
opportunities for parallelism is low.

This might mean our dreams of analyzing the span of a sorting algorithm are dead!

Brandon Wu Sorting and Parallelism 06 June 2023 48 / 62

A Parallel Sort

Fortunately, someone else invented merge sort.9

Def Merge sort is a sorting algorithm involving dividing the list to be sorted in half,
and recursively sorting each half.

Not only does merge sort achieve a better sequential complexity, but we will see
how its span bound improves as well.

9Well, quick sort too. But we will discuss merge sort for today.
Brandon Wu Sorting and Parallelism 06 June 2023 49 / 62

The Mergesort Algorithm

Our algorithm will be as follows:
• Split the list into two halves. It doesn’t really matter how.
• Recursively sort either half.
• Merge the two sorted halves to make a sorted list.

The main important thing here is that it is pretty easy to split a list in half, as well as
put two sorted lists together into another sorted list.

We will implement this, and call those functions split and merge .

Brandon Wu Sorting and Parallelism 06 June 2023 50 / 62

The split Helper

split : int list -> int list * int list
REQUIRES: true
ENSURES: split L ↪→ (A, B) such that L is a permutation of A @ B, and A
and B are roughly the same length

fun split ([] : int list) : int list * int list = []
| split [x] = [x]
| split (x::y::xs) =

let
val (A, B) = split xs

in
(x::A, y::B)

end

Brandon Wu Sorting and Parallelism 06 June 2023 51 / 62

The merge Helper

merge : int list * int list -> int list
REQUIRES: L and R are sorted
ENSURES: merge (L, R) is a sorted permutation of L @ R

fun merge ([] : int list , R : int list) : int list = R
| merge (L, []) = L
| merge (x::xs, y::ys) =

if x < y then
x :: merge (xs, y::ys)

else
y :: merge (x::xs, ys)

Brandon Wu Sorting and Parallelism 06 June 2023 52 / 62

Implementing Mergesort

Now that we’ve defined split and merge , we’re ready to write msort .

msort : int list -> int list
REQUIRES: true
ENSURES: msort L evaluates to a sorted permutation of L

fun msort ([] : int list) : int list = []
| msort [x] = [x]
| msort L =

let
val (A, B) = split L

in
merge (msort A, msort B)

end

Brandon Wu Sorting and Parallelism 06 June 2023 53 / 62

Understanding Mergesort Recursive Problems, Recursive Solutions

This code should almost read like pseudocode to you. In isolation, the split and
merge functions do precisely what they were supposed to do, and take away a
great deal of the cognitive effort in understanding what the msort function does.

msort does as promised – splits the list, recursively sorts the halves, and then
merges them together. There’s very little extra fat to the logic.

Note We need the singleton case for msort , because otherwise split will
produce another singleton, which we will call msort on, which is an infinite loop.

Brandon Wu Sorting and Parallelism 06 June 2023 54 / 62

The Final Product

fun split ([] : int list) : int list * int list = []
| split [x] = [x]
| split (x::y::xs) =

let
val (A, B) = split xs

in
(x::A, y::B)

end

fun merge ([] : int list , R : int list) : int list = R
| merge (L, []) = L
| merge (x::xs , y::ys) =

if x < y then
x :: merge (xs , y::ys)

else
y :: merge (x::xs , ys)

fun msort ([] : int list) : int list = []
| msort [x] = [x]
| msort L =

let
val (A, B) = split L

in
merge (msort A, msort B)

end

That’s all!
Brandon Wu Sorting and Parallelism 06 June 2023 55 / 62

msort Complexity

Now, let’s analyze the complexity of msort . We’ll do the work first, and then the
span.

Note We will assume, but not show, that the complexity of split and merge are
linear in the sizes of their inputs.

Brandon Wu Sorting and Parallelism 06 June 2023 56 / 62

msort : Work Recurrence

fun msort ([] : int list) : int list = []
| msort [x] = [x]
| msort L =

let
val (A, B) = split L

in
merge (msort A, msort B)

end

Where n is the length of the list L in the expression msort L:

Wmsort(0) = c0

Wmsort(1) = c1

Wmsort(n) = 2 ·Wmsort

(n
2

)
+Wsplit(n) +Wmerge

(n
2
,
n

2

)
+ c2

Brandon Wu Sorting and Parallelism 06 June 2023 57 / 62

msort : Work Recurrence

Wmsort(n) = 2 ·Wmsort

(n
2

)
+Wsplit(n) +Wmerge

(n
2
,
n

2

)
+ c2

10

Now we can solve to:

= Wmsort(n)

= 2 ·Wmsort

(n
2

)
+Wsplit(n) +Wmerge

(n
2
,
n

2

)
+ c2

= 2 ·Wmsort

(n
2

)
+ n · c3 + c2

It turns out that this is the same as another recurrence we saw earlier, the balanced
work recurrence for inord , because we have two calls at size n

2 , and linear work at
each node. This solves to O(n log n).

10Here, we use the notation Wmerge(
n
2
, n
2
) because the work of merge actually depends on both of

its arguments. In this case, however, it still ends up just being n · c3, though (combined with the work
from split)

Brandon Wu Sorting and Parallelism 06 June 2023 58 / 62

msort : Span Recurrence

What about span? msort makes two calls to itself in parallel, so there is an
opportunity for a speedup.
We note that the span of merge and split must be the same as the work, though
we don’t show that here.
Where n is the length of the list L in the expression msort L:11

Smsort(n)

= max
(
Smsort

(n
2

)
, Smsort

(n
2

))
+ Ssplit(n) + Smerge

(n
2
,
n

2

)
+ c2

= Smsort

(n
2

)
+ Ssplit(n) + Smerge

(n
2
,
n

2

)
+ c2

= Smsort

(n
2

)
+ n · c2 + c3

11Base cases same as work.
Brandon Wu Sorting and Parallelism 06 June 2023 59 / 62

msort : Span Recurrence

Smsort(n) = Smsort

(n
2

)
+ n · c2 + c3

Now we solve:

= Smsort(n)

= Smsort

(n
2

)
+ n · c2 + c3

= Smsort

(n
4

)
+

n

2
· c2 + n · c2 + c3

= ...

= (1 + 2 + 4 + ...+ n) · c2

So we get that, in parallel, merge sort is in O(n).

Brandon Wu Sorting and Parallelism 06 June 2023 60 / 62

Conclusions

That’s pretty huge! The power of parallelism offers us to not just get a speedup
when doing computations, but mathematically prove that we achieve a better
asymptotic bound – a linear time sort. That’s pretty cool.

There was a lot this lecture. Here’s the highlights:
• We can analyze the work/span of a function on trees in terms of its depth d

• We can use the tree method to solve recurrences that make 2 or more recursive
calls, by summing the cost of each level of the call tree

• We analyzed inord in four cases, and found that inord ’ beat it in all respects
• We implemented insertion and merge sorting algorithms extremely tersely
• We found that merge sort could be parallelized

Brandon Wu Sorting and Parallelism 06 June 2023 61 / 62

Thank you!

	Analyzing a Tree via Depth
	The Tree Method
	A Better inord
	Sorting

