

Lesson Plan

1 The State of Software

2 Program Analysis

3 Doing the Impossible

4 Dataflow Analysis

5 Semgrep

6 Conclusions

Brandon Wu Program Analysis 03 August 2023 2 / 84

Last time

Brandon Wu Program Analysis 03 August 2023 3 / 84

1 - The State of Software

Software and the World

On August 20th, 2011, Silicon Valley venture capitalist and and entrepreneur Marc
Andreessen1 published an essay entitled "Software is eating the world".

This essay included a lot of business-oriented reasons for why software was
immensely disrupting each individual economic sector, for reasons of ease of use,
speed of execution, and reach of influence, among others.

Now, more than a decade after this article, it’s an incredibly obvious fact that
software already has eaten the world. You cannot get away from it – it is
everywhere, and it is everything.

1Currently a board director for Meta Platforms.
Brandon Wu Program Analysis 03 August 2023 5 / 84

The State of Software Engineering

Part of what makes software engineering a lucrative profession is that there is not,
and will never be, a shortage for software engineers.

Regardless of if a company is a recruiting company, a think tank, a massage parlor,
or a pet food retailer, everyone needs software developers. Every business needs a
website, every business deals with data, and every business needs a way to keep
up with every other business, which is doing exactly the same.

Unfortunately, not all of them are educated at Carnegie Mellon, and have taken
15-150, so not all of them are very well-informed on the importance of writing safe
code.

Brandon Wu Program Analysis 03 August 2023 6 / 84

The State of Software Engineering

One theme that has cropped up throughout this course is to try to produce as little
code as possible, because any human writing any amount of code has some
probability of producing a bug.

The less code we write, the less possibility of writing a bug.

So what can we say about the immense volume of code produced by the tens of
millions of software developers around the world?

Answer: It is horribly, immensely buggy, and full of mistakes.

Brandon Wu Program Analysis 03 August 2023 7 / 84

What’s in an Error?

When you write a mistake in your code, what does it often look like?

Maybe you made a typo:

✗
fun fact 0 = 1

| fact n = n * fac (n - 1)

✓
fun fact 0 = 1

| fact n = n * fact (n - 1)

Brandon Wu Program Analysis 03 August 2023 8 / 84

What’s in an Error?

Or maybe you declared a variable, and then forgot to use it:

✗

fun treefoldl f acc Empty = acc
| treefoldl f acc (Node (L, x, R)) =

let
val left_folded = treefoldl f acc L

in
treefoldl f (f (x, acc)) R

end

✓

fun treefoldl f acc Empty = acc
| treefoldl f acc (Node (L, x, R)) =

let
val left_folded = treefoldl f acc L

in
treefoldl f (f (x, left_folded)) R

end

Brandon Wu Program Analysis 03 August 2023 9 / 84

What’s in an Error?

Or maybe you just have a simple type error:

✗
fun foldr f acc [] = acc

| foldr f acc (x::xs) =
f (x, foldr acc xs)

✓
fun foldr f acc [] = acc

| foldr f acc (x::xs) =
f (x, foldr f acc xs)

Brandon Wu Program Analysis 03 August 2023 10 / 84

Static and Dynamic Warnings

These kinds of simple mistakes crop up all the time!

Thankfully, we are working in a language which is disciplined enough to warn you
about most of these things, albeit not all.2

What about all the software being produced elsewhere, though? In some
languages, such as Python, none of these errors are able to be caught, until they
happen at runtime!

We say that making the programmer aware of these errors at compile time, before
the program runs, is a static warning, versus a dynamic warning, which would only
occur once the program runs into it while executing.

2Though it could. SML/NJ in particular just doesn’t.
Brandon Wu Program Analysis 03 August 2023 11 / 84

A Parable of Machine Learning

I love telling this story whenever anyone asks about why it is important to catch
errors statically.

Imagine that you are a machine learning engineer.3

You have spent the past six months working on a state of the art large language
model, and finally you are ready to put it to the test. You just make a few
adjustments (mostly adding comments and clarifying names), before you run the
model and then decide to go on a vacation to France for two weeks.

When you return from your vacation, you discover that your model failed with:
NameError: name ’modle ’ is not defined. Did you mean: ’model ’?

This can actually happen.
3The horror.

Brandon Wu Program Analysis 03 August 2023 12 / 84

The Cost of Mistakes

What’s the point? Programmers make mistakes.

There are many programmers in the world. Programs that make these kinds of silly,
one-off mistakes happen millions of times in a single day. We need to build tools,
compilers, and programming languages that can make sure that these errors do not
make it to real applications, because the cost of doing so is too high.

Remember Tony Hoare’s billion-dollar mistake. We are talking about fighting a war
upon which rests not only billions upon billions of dollars across every conceivable
industry, but upon which rests the security and continued operation of our society.

Brandon Wu Program Analysis 03 August 2023 13 / 84

Battling Software

How can we fix these kinds of mistakes? How do we make sure that, for the
prodigious, gargantuan, and overflowing deluge of software that is pumped out
every day, it is as safe and as correct as possible? The alternative is a reality that is
horrifying to contemplate. 4

Software is eating the world.

It’s time to bite back.

4I highly recommend the book This Is How They Tell Me the World Ends: The Cyberweapons Arms
Race by Nicole Perlroth.

Brandon Wu Program Analysis 03 August 2023 14 / 84

2 - Program Analysis

What is Program Analysis?

Def Program analysis is the art of discovering undesirable behaviors in programs,
usually by automated, programmatic means.

These undesirable behaviors may include correctness, performance, security, and
legibility. Ultimately, it encompasses any property which is worth testing, of a
program.

In essence, program analysis entails writing programs to analyze programs.

Brandon Wu Program Analysis 03 August 2023 16 / 84

Flavors of Program Analysis: Dynamic

Program analysis generally comes in one of two flavors:

Def Dynamic program analysis has to do with figuring out program behavior by
observing its behavior at run-time.
This can include things like fuzzing, which involves running the program on a wide
range of random inputs, profiling, which involves measuring the run-time of a
program on some inputs, and even the simple act of writing tests.
Dynamic program analysis is useful, and goes straight to the source in terms of the
program’s actual behavior, but it is limited in some other ways. Notably, if the target
program loops forever, or crashes, then dynamic program analysis will do the same.
More concerning is that dynamic program analysis will generally have
computational cost equal to that of the program being analyzed. This means that a
program which takes a very long time to run will take a very long time to test. We
don’t always have time for that.

Brandon Wu Program Analysis 03 August 2023 17 / 84

Flavors of Program Analysis: Static

Def Static program analysis concerns ascertaining properties of programs
without ever running the program.
Because as we saw in the last lecture, programs are trees, this means that static
program analysis really just takes the form of recursive functions on trees.
This will be our focus for today. Specific applications of this analysis include:

• static application security testing (or SAST), which is the process of applying
static program analysis to code for security purposes

• syntax highlighting, which looks at a (possibly incomplete) program and tries to
color it, as its being written

• autoformatting, which looks at a program and tries to make it adhere to a
certain stylistic convention

• type-checking, which looks at a program and ascertains what type its
constituent parts have (if any)

Brandon Wu Program Analysis 03 August 2023 18 / 84

A Minor Issue

This is the mission we have ahead of us. Before we can dive into more technical
details, however, we have one small issue before us:

Program analysis is inherently impossible.

Rice’s Theorem is a mathematical theorem in computability theory which states:
All non-trivial semantic properties of programs are undecidable.

In English:
It is impossible to definitively answer yes or no for any property of a program’s
behavior, in a finite amount of time.

Brandon Wu Program Analysis 03 August 2023 19 / 84

https://en.wikipedia.org/wiki/Rice%27s_theorem

The Halting Problem

This is a straightforward corollary of the Halting Problem, which essentially just
states that it is impossible to write a program to tell if a program loops forever or
not.5 The reason why this is impossible come out of asking a simple question: what
should the following function return?

fun not_halts () =
if halts(not_halts) then loop () else ()

This ends up producing a paradox, in much the same way as the liar’s paradox.
Because any program can loop forever, this ends up tainting every other possible
question that program analysis could answer, meaning that all of them are
inherently impossible.
Well, that sucks.

5Note that these claims of impossibility are in general. For instance, I can look at the program
fun loop x = loop x with my eyes and tell you that it loops forever, but we cannot write a
program which does that for every program.

Brandon Wu Program Analysis 03 August 2023 20 / 84

https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Liar_paradox

Battling Impossibility

So then, with this knowledge, is this lecture over?
No, because it only sucks if you’re a quitter.
Recall our idea of strengthening the implementation or weakening the
specification, for solving some problem, meaning that we can either put some
elbow grease in and make our program more powerful, or lower our expectations.
Well, this is a mathematical truth, so it’s not a skill issue in terms of our ability to
implement. That’s not the problem here.
So let’s lower our expectations.

it is impossible to definitively answer yes or no for any property of a program’s
behavior, in a finite amount of time.

The main innovation out of program analysis is – it’s only impossible if you insist on
being right all the time.

Brandon Wu Program Analysis 03 August 2023 21 / 84

Compilers and Program Analysis

Compilers and program analysis are dual in a certain sort of sense, in that a
compiler is itself a kind of program analysis. It follows much the same process, by
analyzing the source text and producing answers, albeit while also producing an
executable file.

The main thing to realize is that a compiler can never be wrong. As stated in the
previous lecture, the day that our compilers are untrustworthy is the day that
programming becomes impossible.

Program analysis suffers from no such thing. Our goal will be to implement analyses
which always complete within a finite amount of time, albeit with the caveat that
sometimes they might be inaccurate or incomplete, or throw their hands up and say
"I don’t know".

Brandon Wu Program Analysis 03 August 2023 22 / 84

Full Employment

A funny corollary of this sentiment is something called the full-employment
theorem, which essentially states that there will always be jobs in program analysis
and compiler-writing, i.e. employment is always ensured.

This is because, due to the fact that the task is inherently impossible, it’s always
possible to write a better analysis that covers more cases, or a compiler which can
produce better binaries. You just need more casework.

Brandon Wu Program Analysis 03 August 2023 23 / 84

https://en.wikipedia.org/wiki/Full-employment_theorem
https://en.wikipedia.org/wiki/Full-employment_theorem

Program Analysis via Casework

For instance, no one is stopping you from doing this:
fun halts (program : string) : bool option =

case program of
"val x = 1" => SOME true

| "val x = 2" => SOME true
| "val x = 3" => SOME true
| "fun loop x = loop x val _ = loop ()" => SOME false
(* add more cases here! *)
| _ => NONE

Far from the cutting edge, but it works. A team of monkeys at typewriters could
eventually churn out a more effective halts function than exists anywhere else.
This might seem demoralizing, but this is somehow actually a motivational
statement that I will always have a job.

Brandon Wu Program Analysis 03 August 2023 24 / 84

Resolution

So, this is the scope of the task in front of us.

We have finite resources and finite time to solve a problem which is impossible to
solve.

And still, software is eating the world. The cost of failing is too high.

Time to put in some elbow grease and get to work.

Brandon Wu Program Analysis 03 August 2023 25 / 84

3 - Doing the Impossible

Type Checking

Consider a more specific example of program analysis, namely that of
type-checking a program.

Now, type-checking always terminates, and it always returns a correct answer. If
the type-checker says an expression has some type, then we can trust that answer,
and if it says our program is ill-typed, then indeed we messed up somewhere.

However, consider the problem of typing the following function:
val div : int * int -> int

Brandon Wu Program Analysis 03 August 2023 27 / 84

A More Accurate div

For the div function, we assign it a type such that it can take in any two integers.
This seems reasonable, with the caveat that if we pass it 0 in the second parameter,
it will crash on us!

Well, this is a dynamic error. We want to catch such things before running the
program. Can we assign div a type, such that it will prevent us from ever running
code which passes 0 to div?

There are two properties that we would desire of such a type:
• we can ascertain it in a finite amount of time
• it says that a usage of div is ill-typed if and only if we pass 0, or a non-int, to it

It is impossible to have both of these things at the same time.

Brandon Wu Program Analysis 03 August 2023 28 / 84

Sweaty Palms

Brandon Wu Program Analysis 03 August 2023 29 / 84

Dependent Types and Type A Analysis

There is a class of languages which have a more sophisticated type system than
Standard ML, called dependently typed languages, where you can actually express
this.

The issue is that type-checking in such languages can loop forever, meaning we
would get the second property, but not the first. We will call this Type A program
analysis.

So the other track will be to get the first property, but not the second. We will have
to accept being wrong sometimes, and either rejecting programs which do not
divide by zero, or accepting programs which do. We will call this Type B program
analysis.

Brandon Wu Program Analysis 03 August 2023 30 / 84

An Analogy for Type B Analysis

Consider the following analogy.

You are in charge of security at an airport.

You are acutely aware of the fact that in the early 2000s, a man tried to set off
plastic explosives concealed in his shoes, during a transatlantic flight from France
to Florida.

The issue is that you don’t have a good way of telling whether an arbitrary individual
might have explosives in their shoes, or not.

So, how do you minimize the chances?

This is the story of why everyone needs to take off their shoes in the airport.

Brandon Wu Program Analysis 03 August 2023 31 / 84

A Rough Approximation

The parable of this story is that, while it may be difficult or impossible to gather an
exact answer (who has explosives in their shoes), it’s easy to obtain an
approximative answer: assume that everyone has explosives in their shoes.

So just scan everybody’s shoes. Problem solved.

So how can we tell which programs contain an unsafe call to "div"? Well, if we
don’t mind being wrong sometimes...

fun containsUnsafeDiv (prog : string) =
stringContains (prog , "div")

Brandon Wu Program Analysis 03 August 2023 32 / 84

Tradeoffs

Which outcome is more preferred? Well, it turns out the answer is "neither of them".

We are basically saying that, to be able to reject all programs which might divide by
zero, we can either accept infinitely looping compile times, or we can reject every
program which contains a div.

Now, with more sophisticated techniques, we can do a little bit better than rejecting
every program containing a div. But not by much.

It turns out, in practice, the right solution will be to simply not care so much about
the division by zero case. It’s not worth the trade-offs.

Brandon Wu Program Analysis 03 August 2023 33 / 84

Downscoping and Type C Analysis

We said it was impossible to have the virtues of Type A and Type B analysis at the
same time. That’s true, if we fix the problem statement. We might say that Type C
program analysis is to both terminate and be correct, but at the cost of simplifying
the problem we are trying to solve.

Type-checking is usually an example of a Type C analysis. So, thus we end up with
not being able to statically catch division by zero errors. For the question of "does
this program divide by zero?", we decided the answer is "we don’t care".

What about the question of "does this program divide by a non-integer"?

It turns out, this is perfectly solvable in a terminating manner. The reason why this is
OK is that "non-integer" is an approximative query – "zero" is specific.

Brandon Wu Program Analysis 03 August 2023 34 / 84

Recap

So let’s recap for a second:
• we would like to answer specific questions about programs, which are

impossible to do in general.
• We need to give up one of guaranteed termination, perfect accuracy, or solving

that exact problem. Types A, B, and C analysis correspond to giving up each of
these things, respectively.

Specific examples include:
• dependent typechecking is a Type A analysis (can loop forever)
• rejecting all programs with div is a Type B analysis (rejects valid programs)
• regular typechecking is a Type C analysis (give up catching divide by zero)

For most practical program analysis tools, looping forever is not an option.6 So for
our purposes, we are generally interested in Type B and Type C analysis.

6We might call this "doubly impossible".
Brandon Wu Program Analysis 03 August 2023 35 / 84

On Incorrectness

But, we still have significant problems left to answer.

Type-checking is only in the Type C category because of decades of work by type
theorists and language designers, to figure out what buckets of questions can be
answered tractably by machines, and to what extent.7

For many other problems, such as code reachability, vulnerability to outside
attackers, and unsafe behavior, we have no such guarantees. We fall squarely into
Type B, Type A is not an option.

So we need to accept being wrong sometimes. Let’s see how.

7Though somehow, many modern languages fall decades behind still in that respect
Brandon Wu Program Analysis 03 August 2023 36 / 84

4 - Dataflow Analysis

Approximation

A classic technique used in program analysis to obtain approximative 8 answers in a
finite amount of time is called dataflow analysis.

Before I can define it to you, I must give you an analogy.

8Life hack: you can successfully replace "incorrect" with "approximative" in so many different
places that it’s hilarious.

Brandon Wu Program Analysis 03 August 2023 38 / 84

An Analogy for Dataflow Analysis

Suppose you have a query you would like to solve on programs, which has many
possible answers. Further suppose that the number of possible answers is finite.

Suppose that you line them all up, one next to the other.

ans1, ans2...ansn

Program analysis is hard because information can change a lot, infinitely much in
fact, over the course of a program’s run-time. You might pick an answer n, then
move to answer n− 2, then move to a different answer k altogether. It’s possible to
jump all around, in the limit of the program’s execution.

An observation can be made that, if you can order your answer in a way such that,
over the course of your analysis, you only ever change your answer by moving right,
you will always eventually terminate.

Brandon Wu Program Analysis 03 August 2023 39 / 84

Monotonicity

This is a roundabout way of describing what is known as a monotonic function,
which is a function which always "increases", according to some proper notion of
"increases". In this case, our monotonic function also has an upper limit, i.e. a point
beyond which it can no longer grow.

For dataflow analysis, we will make use of this kind of analysis to iterate over our
control-flow graph, constantly updating our answer, but only in a way that
"increases", and eventually caps out. If we can do that, then we will guarantee that
we will terminate.

This also usually makes our answers sometimes wrong, though.

Brandon Wu Program Analysis 03 August 2023 40 / 84

A Dataflow Example

For instance, consider the following control-flow
graph:

We would like to perform an analysis known as
constant propagation on it, by noting which variables
are set to be constant.

How do we do this? We simply march forward through
the CFG, and noting down which variables are
constant as we see them, starting with the empty set.

x <- 1
y <- 2

x <- x + 2

ret x

Brandon Wu Program Analysis 03 August 2023 41 / 84

A Dataflow Example

So for instance, first we traverse the entering
block, by simply penciling in x and y as we
see them get assigned to constants.

Once we finish, we now have the out-set for
the first block, which we can then use to
determine the other blocks.

x <- 1
y <- 2

{}
{x 7→ 1}

{x 7→ 1, y 7→ 2}

x <- x + 2

ret x

Brandon Wu Program Analysis 03 August 2023 42 / 84

A Dataflow Example

After following the highlighted edge, we end
up at the second block. Since we have some
information about what variables are
constant, we can carry that information here.

Then, we see that x is incremented by two,
and thus must be constant at 3 at the
conclusion of the block.

x <- 1
y <- 2

{}
{x 7→ 1}

{x 7→ 1, y 7→ 2}

x <- x + 2
{x 7→ 1, y 7→ 2}

{x 7→ 3, y 7→ 2}

ret x

Brandon Wu Program Analysis 03 August 2023 43 / 84

A Dataflow Example

But, now we need to follow the self-loop!
Something weird happens here.

There are two conflicting out-sets that are
going in to the second block. One is the one
we just computed, {x 7→ 3, y 7→ 1}, from the
output of the second block itself. The other is
{x 7→ 1, y 7→ 1}, from the original out-set from
the first block.

This means we have a conflict. x is constant,
but at two different values, coming in to the
second block.

x <- 1
y <- 2

{}
{x 7→ 1}

{x 7→ 1, y 7→ 2}

x <- x + 2
{x 7→ 1, y 7→ 2}

{x 7→ 3, y 7→ 2}

ret x

Brandon Wu Program Analysis 03 August 2023 44 / 84

A Dataflow Example

This must mean that x is not constant after all.

So we set the value of x to instead be ⊤,
which means "not constant". Note that this is
different than x not having a value, which
denotes not knowing if it is constant or not.

x <- 1
y <- 2

{}
{x 7→ 1}

{x 7→ 1, y 7→ 2}

x <- x + 2
{x 7→ ⊤, y 7→ 2}

{x 7→ ⊤, y 7→ 2}

ret x

Brandon Wu Program Analysis 03 August 2023 45 / 84

A Dataflow Example

Then, once we are assured that everything
looks good, we can proceed to the final block,
where we observe that we return x at a
non-constant value.

This means that we cannot optimize the
return value of this function after all.

Different story if we had returned y!

x <- 1
y <- 2

{}
{x 7→ 1}

{x 7→ 1, y 7→ 2}

x <- x + 2
{x 7→ ⊤, y 7→ 2}

{x 7→ ⊤, y 7→ 2}

ret x
{x 7→ ⊤, y 7→ 2}

{x 7→ ⊤, y 7→ 2}

Brandon Wu Program Analysis 03 August 2023 46 / 84

Generality of Dataflow

This is a contrived example, but the really interesting thing is that dataflow analysis
works for any control-flow graph.

The process seemed somewhat silly, as we could determine with our eyes that x
was non-constant, but for very complicated control-flow graphs this is not an
obvious fact at all. Programmatically, we can still run this same analysis, however.

This analysis is also guaranteed to terminate, due to the monotonic reasons we
stated earlier. The actual reason for this is that dataflow analysis strictly traverses
up a lattice.

Brandon Wu Program Analysis 03 August 2023 47 / 84

Constant Definitions Lattice

{x 7→ ⊤, y 7→ ⊤}

{}

{x 7→ n, y 7→ ⊤}

{x 7→ n, y 7→ n′}

{x 7→ ⊤, y 7→ n′}

{y 7→ ⊤}

{x 7→ n} {y 7→ n′}

{x 7→ ⊤}

Brandon Wu Program Analysis 03 August 2023 48 / 84

Climbing the Lattice

The diagram looks scary, but the key thing is just that it assigns each variable a
value of either no value, any constant n or n′, or ⊤, which means "not constant".

Edges go from sets to ones which have either added a new variable at a constant,
or that have upgraded a variable from a constant to the not-a-constant symbol ⊤.
This represents the gaining of information, of either a variable being declared as a
constant, or a variable being discovered as not-a-constant.

• For instance, we started at {}, and then went to {x 7→ 1} when we read x <- 1.
• Or, we went from {x 7→ 1, y 7→ 2} to {x 7→ ⊤, y 7→ 2} upon seeing that x was set

as two different constants, along two different paths to the block.

Brandon Wu Program Analysis 03 August 2023 49 / 84

Monotonicity in Constant Definitions

The main thing to take away here is that every arrow goes up. We talked earlier
about putting answers on a number line, which is represented in terms of the
lattice’s height, here. No matter what edge you pick, you go up some amount, which
means we must terminate.

We can’t go down, because it’s impossible to update your worldview to either
remove a variable from the set, or to set a variable from not-constant to constant.
Once you know something about a variable, you can’t go back.

Brandon Wu Program Analysis 03 August 2023 50 / 84

Approximation of Dataflow

I mentioned earlier that this analysis is necessarily
wrong, however.

The reason comes out of the fact that the control-flow
graph is just how the execution of the program might
go. In reality, it’s quite possible that at runtime, we
never enter the self-loop, meaning that x really is
constant.

But, without running the program, we have no way of
knowing, so we assume that x is updated at some
point. This makes our knowledge necessarily possibly
wrong, but a good approximation.

x <- 1
y <- 2

x <- x + 2

ret x

Brandon Wu Program Analysis 03 August 2023 51 / 84

On Dataflow Analysis

This was a really simple example that I hoped you might be able to understand.
Dataflow analysis in general is a very powerful technique, however, and admits
many other analyses, many of which are quite useful. These include:
• available expressions - is there a definition of this exact expression already at

this program point? useful in optimizing away redundant computations.
• reaching definitions - what definitions of a variable can reach a given program

point? useful in building use-def chains (i.e. "goto definition" in IDEs)
• liveness analysis - what variables might actually be needed in the future?

useful in eliminating dead code.
• taint tracking - can data from undesirable sources reach some sensitive

program point? very useful in security applications.

The rabbit hole goes deep. This one is simple, but this is a bread-and-butter
technique in program analysis.

Brandon Wu Program Analysis 03 August 2023 52 / 84

Dataflow Analysis and Functional Programming

Dataflow analysis, unfortunately, has almost nothing to do with functional
programming.

I’ve been avoiding showing you code for this part because it’s both pretty complex,
and there aren’t extreme benefits to doing it in SML.

Dataflow analysis can be considered a more "imperative" approach to program
analysis, because it occurs at the lower level of the control-flow graph and the
abstract assembly instructions. What if we want to stay at the level of the AST,
where all the nice semantics and program structure live?

It turns out, this will be a very effective approach to program analysis.

This is the story of Semgrep.

Brandon Wu Program Analysis 03 August 2023 53 / 84

5 - Semgrep

Analysis at the ASTs

Before we delve deeper, it’s worth developing: why should we stay at the AST level,
as opposed to abstract assembly? Isn’t that the opposite of what a compiler does?
Shouldn’t closer to the source be better?

Before I can answer that question, it’s worth noting some things about security and
software engineering.

In the absence of external pressure, these things do not generally go together.

Software engineers are paid to write code, are judged on their code, and spend
large amounts of time thinking about their code. What they are not necessarily,
however, is educated in the ways of safety. So this tends to take a back seat.

Brandon Wu Program Analysis 03 August 2023 55 / 84

Being Wrong

For a compiler, being wrong is a hellish scenario that is too horrifying to even
contemplate.

For a program analysis tool, being wrong is Tuesday.

Still, to the developers who are receiving security notifications on their pull
requests, as well as the security engineers that are constantly on the lookout for big
vulnerabilities, it matters howwrong the tool usually is.

The easier way to make change is not to preach at someone the right way to do
things, but to make them want to do things the right way. A SAST tool needs to be
fruitful, but frictionless.

Why am I mentioning this?

Brandon Wu Program Analysis 03 August 2023 56 / 84

Deduplicating Efforts

We want to be able to provide as little friction as possible, while producing the best
possible results. In the case of Semgrep, staying primarily at the language level is
an enormous labor saving device.

We talked earlier in the compilers lecture about how a compiler will have a type
token list and a type ast, which it converts from and to during parsing.

For a program analysis tool for Python, they may need to do this parsing process
from a token list to a Python AST. For a program analysis tool for C, they may need
to do the same for a C AST, which is a different type.

This can lead to massive duplication of efforts.

Brandon Wu Program Analysis 03 August 2023 57 / 84

A Pipeline for Program Analysis

So the picture looks like this:

Java code Python code C code

Java AST Python AST C AST

Java analysis Python analysis C analysis

This introduces a massive amount of boilerplate.

Brandon Wu Program Analysis 03 August 2023 58 / 84

The Essence of Programming Languages

For as much as people complain about programming languages9, after some time
with them you begin to realize that most of them look quite similar.

For instance, many languages have for loops, and many languages have exception
raising and handling, and almost every language has functions, ways to define
variables, and ways to call functions.

Now, every language has its own idiosyncrasies which set them apart in miniscule
ways, which makes writing something like a universal compiler a pipe dream. But
what if we’re working in an application where being wrong in small ways doesn’t
really matter?

For program analysis tools, being wrong is Tuesday.

9As have I.
Brandon Wu Program Analysis 03 August 2023 59 / 84

A Pipeline for Semgrep Analysis

Semgrep is a code-scanning tool for over 24 languages.
The way that it achieves this is that it parses every single language to the same
type, called the Generic AST, which is a smörgåsbord union of all the language
features in pretty much every language.
This means that its pipeline looks remarkably simpler:

Java code Python code C code

Generic AST

Analysis

Brandon Wu Program Analysis 03 August 2023 60 / 84

Picking Battles

We see that staying at the AST level saves us work, which can be wrong at times
due to imperfect translation, but ultimately doesn’t matter for a program analysis
tool. More importantly, it allows for cleaner code to be written, which translates to a
better tool.

When solving an impossible problem, you have to be pragmatic. Picking battles that
you can win is essential.

Semgrep takes a more "syntactic" approach to program analysis that turns out to
work very well in practice. Now, let’s talk about what it does.

Brandon Wu Program Analysis 03 August 2023 61 / 84

Source-Level Errors

Many program errors aren’t purely due to what happens at the level of assembly.
Many of them are apparent from the source code, because they were written by a
developer who was writing source code.

For instance, consider the following Python code, with a function that has a default
argument to set to []:

def append_to(element , to=[]):
to.append(element)
return to

What do you think this does?

Brandon Wu Program Analysis 03 August 2023 62 / 84

Default Dead Arguments

It turns out that the first time you call append_to (2), you will get [2]. That’s cool.

The second time you call append_to (2), you will get [2, 2].

Uh oh.

Brandon Wu Program Analysis 03 August 2023 63 / 84

Errors at the Source

It turns out this is due to the fact that Python default arguments are instantiated at
function definition time, and so if it is mutated, that mutation persists through each
call.

This is an error that would be very easy to catch in code review. Unfortunately,
there are tens of millions of developers in the world, and even a 99% review success
rate has bad implications.

So at the end of the day, we might not need to descend further down than the AST.
Let’s see how we can fix such bugs while staying above ground.

Brandon Wu Program Analysis 03 August 2023 64 / 84

Forms of Program Analysis

It turns out that program analysis can take many forms. We might want to use it for
security purposes, we might want to use it for style checking, and we might want to
use it to automate code review for things like the error we just saw.

A common theme in program analysis is simply finding certain things in your source
code. This might be something like an unused variable, a type error, or even a
function call which might lead to a security vulnerability. We call such regions of
interest a finding.

Semgrep is a program analysis tool10 that is mainly aimed being customizable to all
of these use cases. This means that while that while some tools find security
vulnerabilities, and some tools find style errors, the answer to what Semgrep finds
is whatever you want.

10And company.
Brandon Wu Program Analysis 03 August 2023 65 / 84

A Semantic Grep

Semgrep stands for semantic grep.

If you’ve used the tool grep before, you know that it is really just a no-nonsense
precursor to what is now Ctrl-F in most browsers.11

But, it’s limited in some ways. Suppose we wanted to find all instances of using the
function print to debug, before we put the code up for review. What do you think
is going to happen when we search for every instance of the literal substring "print"?

The answer: We are going to be absolutely inundated with results. We’ll find the
string print if it occurs in comments, if it occurs in literal strings, and even if it’s part
of a larger method name. That doesn’t make it what we were looking for, though!

In other words, grep doesn’t understand the meaning of what we’re looking for, it’s
just looking for sequences of characters. Semgrep does.

11Such as Arc, the browser that I am currently using.
Brandon Wu Program Analysis 03 August 2023 66 / 84

https://semgrep.dev/

Tree Search and Semgrep

How does Semgrep understand the semantics of the program? Recall that the literal
text in a program just serve as a proxy that indicates the underlying tree of the
program, which contains its real meaning.

Semgrep doesn’t do text search, it does tree search. This means that instead of
searching for a sequence of characters within a given program, it searches for a
matching subtree within a program’s AST.

This means that a user might specify a particular pattern AST, which refers to the
AST that they would like to search for, and then Semgrep will search the target AST
to find a subtree which matches it.

The key innovation of Semgrep is that, although it does AST matching, the user
doesn’t need to be able to construct one, or even know what it is. Pattern ASTs are
derived from patterns written in the source language, meaning that they look like
code.

Brandon Wu Program Analysis 03 August 2023 67 / 84

Matching, Take 1

So, our query might look like:

print

ValDec

() FuncCall

print "let ’s print!"

print val () = print "let ’s print!"

Brandon Wu Program Analysis 03 August 2023 68 / 84

https://semgrep.dev/playground/s/BBJ5

Matching, Take 1

So, our query might look like:

print

ValDec

() FuncCall

print "let ’s print!"

print val () = print "let ’s print!"

Brandon Wu Program Analysis 03 August 2023 69 / 84

https://semgrep.dev/playground/s/BBJ5

Syntax Aware

Notably, however, we avoid matching the instance of the literal string of "print"
inside of the string that is being passed to its namesake function.

This is because we are only matching at the granularity of nodes of the AST, not of
the constituent text. Regular expressions, for instance, would be fooled by
instances of "print" within comments or strings.

When it comes to minimizing instances of program analysis tools being flat-out
wrong, this is an invaluable help. Most program analysis tools are black-box
applications that perform some magic to produce matches, without necessarily
being understandable. The algorithm of Semgrep is really quite simple, and still
manages to avoid false positives.

Brandon Wu Program Analysis 03 August 2023 70 / 84

Matching, Take 2

We can do a little more advanced of a query, too. Suppose that we were interested
in finding all of the examples of a call to the function ref.
Well, we might write a pattern like ref $X, which uses a metavariable to bind to any
sub-AST.

FuncCall

ref $X

ValDec

r FuncCall

ref 2

ref $X val r = ref 2

Brandon Wu Program Analysis 03 August 2023 71 / 84

https://semgrep.dev/playground/s/07Ob

Matching, Take 2

Here, we bind the metavariable $X to the node of 2, and then the entire pattern
succeeds at matching the highlighted sub-tree of the target.

FuncCall

ref $X

ValDec

r FuncCall

ref 2

ref $X val r = ref 2

Brandon Wu Program Analysis 03 August 2023 72 / 84

https://semgrep.dev/playground/s/07Ob

Matching, Take 3

We can also express more complicated queries. What if we want to find instances of
a useless comparison, such as testing if an expression is equal to itself?

=

$X $X

ValDec

b =

FuncCall

f 2

FuncCall

f 2

$X = $X val b = (f 2 = f 2)

Brandon Wu Program Analysis 03 August 2023 73 / 84

https://semgrep.dev/playground/s/YxEX

Matching, Take 3

Here, because we reuse the metavariable $X twice, the two instances unify,
meaning that the ASTs that each binds to must be the same. In this case, that
works.

=

$X $X

ValDec

b =

FuncCall

f 2

FuncCall

f 2

$X = $X val b = (f 2 = f 2)

Brandon Wu Program Analysis 03 August 2023 74 / 84

https://semgrep.dev/playground/s/YxEX

Matching, Take 3

But in this case, there would be no match, because the blue and magenta subtrees
do not match.

=

$X $X

ValDec

b =

FuncCall

f 2

FuncCall

f 2

$X = $X val b = (f 2 = g 2)

Brandon Wu Program Analysis 03 August 2023 75 / 84

https://semgrep.dev/playground/s/67Q6

A 150 Analysis

Let’s apply this to a very concrete example that we saw earlier this semester. Recall
that appending a singleton to the end of the list is an anti-pattern that generally
indicates you are doing something inefficient.

We can write a Semgrep query which checks for precisely that!
$E1 @ [$E2]

Brandon Wu Program Analysis 03 August 2023 76 / 84

A 150 Analysis

Let’s see it in action:

@

$E1 List

$E2

. . .

@

FuncCall

rev xs

List

x

$E1 @ [$E2]
fun rev [] = []

| rev (x::xs) =
rev xs @ [x]

Brandon Wu Program Analysis 03 August 2023 77 / 84

https://semgrep.dev/playground/s/oXpN

Matching, Generically

Because all programs parse to the same AST type, we only need a single matching
function of type:

val match_exprs : expr * expr -> finding list

which can do matching for Java, for C, for OCaml, for Python, and many other
languages besides.

For the simple example we saw earlier, of matching the Python function with a list
as a default argument, we can write a very simple Semgrep rule.

Brandon Wu Program Analysis 03 August 2023 78 / 84

https://semgrep.dev/playground/s/JkjR

Semgrep and Semantics

When it comes to program analysis, tree matching isn’t necessarily enough.
Semgrep’s main matching capability is at its core more of a Type C analysis, but
sometimes we want to be able to find more semantic bugs!

When it comes to tracking the flow of data, Semgrep uses the theory of dataflow
analysis as developed before to implement taint tracking, which allows you to
specify certain sources of bad data, and sinks where that data should not flow into,
during the program’s execution.
Here’s an example of taint tracking with Semgrep.

It can also perform constant propagation much in the same way that we did earlier:
Here’s an example.

Semgrep is aware of the semantics of the programming language that it scans,
meaning that it is not just a simple matching process. It’s a syntactically-based
analysis that is supplemented by deeper semantic analysis.

Brandon Wu Program Analysis 03 August 2023 79 / 84

https://semgrep.dev/playground/s/D1wq
https://semgrep.dev/playground/s/4APL

6 - Conclusions

Program Analysis at Large

Program analysis is an extremely important field which aims to both enforce that
the code we write is safe, as well as supplement the process of writing code by
providing programmers with the information they need to execute smoothly. Even in
the face of mathematical impossibility, it prevails.

Syntax highlighting, IDE warnings, type-checkers, and autoformatters are all among
the niceties that programmers enjoy, due to advances made in analyzing and better
making information available about programs.

Brandon Wu Program Analysis 03 August 2023 81 / 84

Recursive Programs, Recursive Solutions

In a world where there are tens of millions of developers, and billions upon billions of
lines of code, it’s simply not possible to cognize in our human brains that volume of
code. Things will slip through the cracks. Catastrophic things might happen.

But, programs are ultimately just recursive entities, and recursion is just a technique
for fitting an unlimited amount of things into your brain.

Brandon Wu Program Analysis 03 August 2023 82 / 84

Program Analysis and Impact

There is something to be said about making an impact with your work.

One of the things I value a lot is the ability to tackle interesting problems. Another is
in being able to use elegant foundations (functional programming), and another is in
being able to ultimately make a real impact.

Program analysis is my trinity of all three. There’s nothing else in the world like it.

Brandon Wu Program Analysis 03 August 2023 83 / 84

Thank you!

	The State of Software
	Program Analysis
	Doing the Impossible
	Dataflow Analysis
	Semgrep
	Conclusions

