

Lesson Plan

1 Overview

2 Concrete Syntax

3 Augmented Arguments

4 Records

5 Metaprogramming

6 Binding Operators

7 Conclusions

Brandon Wu From SML to OCaml 18 January 2024 2 / 65

1 - Overview

Language Learning

Learning a programming language is usually an arduous task, requiring
understanding of a brand new toolbox of tools and tricks to program with.

One might struggle for quite a while to even conceptualize the basics of a new
programming language, particularly one with a novel structure.

Luckily, as students of 15-150 at Carnegie Mellon University, you already know this
one. You just haven’t realized it yet.

Brandon Wu From SML to OCaml 18 January 2024 4 / 65

Languages by Comparison

Standard ML is the language of choice taught in Carnegie Mellon’s 15-150 course. It
is a formally specified, mostly pure language which adheres to a functional style,
and supports algebraic datatypes, full type inference, and a powerful module
system.

OCaml (short for Objective CAML1) is an industrial-strength language used in static
analysis, compilers, proof assistants, and at least one quantitative trading firm. It is
a somewhat2 specified, mostly pure language which adheres to a functional style,
and supports algebraic datatypes, full type inference3, and a powerful module
system.

Go figure.
1Which itself stands for "Categorical Abstract Machine Language". Funnily enough, this means that

this ML does not mean the same thing as SML’s ML, which stands for "Meta Language".
2This is another way of saying "not".
3Pedantry requires I insert an asterisk here. I refuse to elaborate on why, though.

Brandon Wu From SML to OCaml 18 January 2024 5 / 65

https://smlfamily.github.io/sml97-defn.pdf

Why OCaml?

There are some things we need to clear up before proceeding, chief of which is why
it is valuable to learn OCaml in the first place. If you’ve seen my prior lectures4, you
know that I am a firm believer that it is the concepts behind the language that
matter most. Why learn a similar language?

The truth is that Standard ML is a more academically oriented language, and while a
language should be able to be measured solely by its own virtues, in practice that is
not how programming languages work. There are considerations of ecosystem,
culture, and community, and OCaml has far better tooling and developer
friendliness.

In short, 15-150 was to teach you how to program better. Now, this lecture is to
teach you how to program better, better.5

4Graciously hosted at https://brandonspark.github.io/150/
5Once you finish reading this lecture slide, you can even go so far as to put OCaml under your list of

programming languages on your resume. I believe in you.
Brandon Wu From SML to OCaml 18 January 2024 6 / 65

https://brandonspark.github.io/150/

Why OCaml?

Otherwise, the reasons for learning OCaml are going to be very similar to the
reasons for why you should learn Standard ML.

For scripting and small experiments, dynamically typed languages can be perfectly
fine. When maintaining and contributing to a project which will last for years and
years, the health and overall tech debt of the project will matter far, far more than
whether or not you could get out a feature out a day or two faster (and possibly
with bugs).

OCaml, like many other functional languages, is safe, first and foremost. It is
incredibly important that you learn to use a language which prevents you from
shooting yourself in the foot. I’m here to translate your skills from 150 into the real
world6.

6Not to be confused with the real world.
Brandon Wu From SML to OCaml 18 January 2024 7 / 65

https://dev.realworldocaml.org/

OCaml Fun Facts

I can’t resist waxing on about some OCaml fun facts, so I’ll give you some bullet
points.
• OCaml is a French language. As in, the French pretty much invented it.7
• OCaml was the original implementation language of the Rust compiler. That

means that by learning OCaml, you’re one step ahead of the zeitgeist.
• OCaml is used by a few formal methods/static analysis projects, one of them

being my workplace, Semgrep! This means that all the advice I am giving you is
as a professional8 OCaml programmer.

• Once, Facebook literally reskinned OCaml and presented it to the world as
"ReasonML", a definitely not scary language for web developers, point right
point left emojis. It worked distressingly well.

7I’m not joking.
8As in, they pay me money. Too much, actually.

Brandon Wu From SML to OCaml 18 January 2024 8 / 65

https://semgrep.dev/

The Road Ahead

The hope is that at the end of this lecture, you will be not only approximately as
proficient in OCaml as you were in Standard ML, but you will be aware of all of the
cool new things that OCaml adds, that can make your programming experience a lot
more convenient.

If you ever want to write a useful, programming language-based personal project,
such as a compiler, pretty printer, formatter, debugger, or static analyzer, I believe
that there is no better language than OCaml. We’ll also talk about where it stands
with respect to some other languages.

Brandon Wu From SML to OCaml 18 January 2024 9 / 65

2 - Concrete Syntax

Declarations

First off, let’s start with declarations.
Basic top-level declarations in SML and OCaml look quite similar, the only difference
being the usage of the let keyword instead of val.

val x = (2, 3 + 5)

SML

let x = (2, 3 + 5)

OCaml

We also replace the fun keyword here, in OCaml. Instead, we use the keywords
let rec, which signifies a let binding which is recursive.

fun f x y = f x (y - 1)

SML

let rec f x y = f x (y - 1)

OCaml

Incredible.

Brandon Wu From SML to OCaml 18 January 2024 11 / 65

Nested Declarations

SML and OCaml both have let bindings, but the SML one allows for many
declarations at once, whereas an OCaml let binding only allows a single declaration.
They have the form of:

let
⟨declarations⟩

in
⟨expression⟩

end

SML

let ⟨pattern⟩ = ⟨expression⟩ in
⟨expression⟩
OCaml

Note that the OCaml version does not have an end.

Brandon Wu From SML to OCaml 18 January 2024 12 / 65

Nested Declarations

These do not look so different in the case of a single local declaration, but let’s look
at an example with more than one:

let
val x = 1
val y = 2

in
x + y

end

SML

let x = 1 in
let y = 2 in
x + y

OCaml

In OCaml, it looks almost as if the in serves like a semicolon in other languages,
which delimits the let binding from the rest of the expression.

Brandon Wu From SML to OCaml 18 January 2024 13 / 65

Lists and Tuples

Lists and tuples also look a little bit different.

Lists delimit their items with semicolons instead of commas:

val x = [1, 2, 3]

SML

let x = [1; 2; 3]

OCaml

Tuples also do not always require parentheses around them, as they do in SML. This
means that lists of tuples can look quite strange, in OCaml:

val x = [(1, 2), (3, 4)]

SML

let x = [1, 2; 3, 4]

OCaml

Brandon Wu From SML to OCaml 18 January 2024 14 / 65

Pattern Matching

Pattern matching also has an alternative syntax.
case x of

0 => 1
| _ => 2

SML

match x with
| 0 -> 1
| _ -> 2

OCaml

Not only have a few words and symbols been swapped around, but you can now
put a bar before the very first case in a match expression.
Feature OCaml also has first-class syntax for "when clauses", which combine
pattern matching with conditionals. So for instance:
case x of

[] => 1
| x::xs =>

if f x then 2 else 3

SML

match x with
| [] -> 1
| x::xs when f x -> 2
| x::xs -> 3

OCaml

Brandon Wu From SML to OCaml 18 January 2024 15 / 65

Functions

OCaml does not have a notion of function clauses. Functions which case upon their
arguments are usually written as explicitly naming their arguments, then cased upon
with a match expression.

fun fact 0 = 1
| fact n = n * fact (n - 1)

SML

let rec fact n =
match n with
| 0 -> 1
| n -> n * fact (n - 1)

OCaml

Note that it is possible to write an OCaml function without the rec! Thus, it is
possible to write a function with just a single let, meaning let rec is not a perfect
analogue to fun. For instance, we could write:

let f x y = x + y

Brandon Wu From SML to OCaml 18 January 2024 16 / 65

Lambdas

For lambdas, we actually get more functionality out of OCaml.

Feature Whereas SML has a single kind of lambda expression (or fn expression),
OCaml has two! One uses the fun keyword9, and the other uses the slighter longer
function keyword. For instance, the following expressions are exactly the same:

fun x -> x + 1

SML

function x -> x + 1

OCaml

9Confusingly.
Brandon Wu From SML to OCaml 18 January 2024 17 / 65

OCaml: Kinds of Lambdas

They have different strengths, however! A fun lambda expression allows shorthand
for multiple curried arguments, and a function lambda expression allows pattern
matching. For instance:

let f : int -> int -> int -> int =
fun a b c -> a + b + c

let rec fact = function
| 0 -> 1
| n -> n * fact (n - 1)

It is idiomatic that functions which case upon their last arguments will use a
function expression, instead of naming the argument explicitly!

Brandon Wu From SML to OCaml 18 January 2024 18 / 65

Datatypes

In OCaml, the type keyword is overloaded for both declaring a datatype and
declaring a type alias.

datatype tree =
Empty

| Node of tree * int * tree

SML

type tree =
| Empty
| Node of tree * int * tree

OCaml

However, the following code is valid in both languages:

type t = int

Remark It’s also worth noting that constructors in OCaml must begin with a capital
letter. Correspondingly, identifiers must begin with a lowercase letter10.

10In practice, this actually turns out to be remarkably useful when reading OCaml code, as it lets you
easily differentiate them.

Brandon Wu From SML to OCaml 18 January 2024 19 / 65

Small Remarks

And finally, here are some miscellaneous notes:
• Values of the ’a option type are now None and Some e, rather than NONE

and SOME e.
• Tuples evaluate right to left, rather than left to right. This will almost never

matter, but the more you know.
• OCaml has floats instead of reals.
• + and other arithmetic operators are not overloaded to work on both ints and

reals (floats)
• Constructors are not truly identifiers, and can’t be passed in as functions. For

instance, you cannot write map Some [1; 2], it would need to be
map (fun x -> Some x) [1; 2]

Brandon Wu From SML to OCaml 18 January 2024 20 / 65

3 - Augmented Arguments

Extra Power

Now, we will talk about features that OCaml has that are not present in Standard
ML, that provide a direct level of power and expressiveness to the language.

Consider the foldl function.

fun foldl f z [] = []
| foldl f z (x::xs) =

foldl f (f (x, z)) xs

Brandon Wu From SML to OCaml 18 January 2024 22 / 65

The Order of Arguments

One very common point of friction with using the foldl function is remembering
the order of the arguments. Is it the accumulating function first, the accumulator, or
the list?

This gets annoying fast, and can also produce more unwieldy code, especially if
you’re trying to use pipes. For instance, you cannot pipe an expression into foldl
as the accumulator.

A nice feature from other languages is the idea of named arguments, which permit
passing in arguments by an explicit name, rather than positionally. This is a feature
that OCaml supports.

Brandon Wu From SML to OCaml 18 January 2024 23 / 65

Named Arguments

So, in OCaml, we could instead write the foldl function like this:11

let rec foldl ∼f ∼acc l =
match l with
| [] -> []
| x::xs ->

foldl ∼f:f ∼acc:(f (x, acc)) xs

The tildes denote that the arguments are not positional arguments that are then
bound to the names f or acc, but named arguments with the names f and acc.

Note that we use the syntax of ∼argname:expr to denote that we are passing in
the expression expr as the argument with name argname .

11The ∼f:f written above can actually be shortened to just ∼f, which implicitly is the same. It just
uses the existing binding of f, instead of explicitly having to name it twice.

Brandon Wu From SML to OCaml 18 January 2024 24 / 65

Named Arguments: Usage

What’s the point? It means that now, when using the foldl function, we do not
need to remember which argument comes first, but instead just the names of the
arguments that it takes in.

foldl ∼acc:0 ∼f:(fun (x, acc) -> x + acc) [1; 2]

In fact, we could also put the named arguments behind the list, if we wanted. This
grants us a great deal of flexibility when it comes to structuring our code.

When working with functions with many arguments, or functions whose call-sites
are given undescriptive arguments, named arguments can be very helpful for
writing clearer code.

Brandon Wu From SML to OCaml 18 January 2024 25 / 65

Having Patients

Consider the problem of trying to create records of patients in a hospital.

type patient =
string (* name *)
* int (* patient id *)
* string option (* insurance *)

To that end, we might want a function which can construct values of this type, in
case we ever modify it in the future.

fun mk_patient name insurance_opt =
(name , new_id (), insurance_opt)

(assuming that we had a new_id : unit -> int that just used and updated a
global ref of patient IDs)

Brandon Wu From SML to OCaml 18 January 2024 26 / 65

Having Patients

But, this can be inconvenient to use! This means that any time we have a patient
whose insurance is unknown, we will need to explicitly pass in a NONE :

mk_patient name NONE

Even worse, sometimes patients do not have names – for instance, when an
unknown person is treated. So the call-site for the function would look like:

mk_patient "John Doe" NONE

Brandon Wu From SML to OCaml 18 January 2024 27 / 65

Optional Arguments

This is kind of gross, especially if we wanted to change the default, or change what
arguments the function takes in. Put in another way, the information having to do
with the function’s defaults is distributed across all of its call-sites, instead of at the
function itself.

Fortunately, OCaml has optional arguments, which allow functions to specify
arguments that do not have to be given to the function.

So instead, we could write12:
fun mk_patient ?(name = "John Doe") ?(insurance = None) () =

(name , new_id (), insurance)

12The extra () argument is because optional arguments must be erasable, meaning that it must be
clear which arguments a partial application is treating as optional. This makes it explicitly so optional
args must be given before the unit.

Brandon Wu From SML to OCaml 18 January 2024 28 / 65

Optional Arguments: Usage

This ends up being far more convenient, because this means that optional
arguments can be omitted at their call-sites, if the information is not available.

Thus, we could instead have our call-sites as, in the case where we have no
insurance, and no name and no insurance, respectively:

mk_patient name ()

mk_patient ()

Brandon Wu From SML to OCaml 18 January 2024 29 / 65

4 - Records

On Tuples and Product Types

The next most salient way that OCaml diverges from SML is in its treatment of
records. First, we will require an introduction to records, which is not a topic that is
often covered in 15-150.

In Standard ML and OCaml, we can use tuples, or product types, to organize
multiple values into one. We see that the type of a tuple is merely a summary of the
constituent types it contains – a tuple of two integers is simply given the
self-explanatory type int * int.

This can become quite inconvenient. For instance, take the type signature of a
function which computes the number of days between two dates:

daysBetweenDates : int * int * int -> int * int * int -> int

Brandon Wu From SML to OCaml 18 January 2024 31 / 65

An Ambiguous Type

This is clearly an incredibly undescriptive type. There are seven instances of
integers, and depending on where the user originates from, it might be unclear
which integer denotes the month, day, or year!

For instance, the American convention is MM/DD/YYYY, but the European
convention is DD/MM/YYYY. That can make using this API confusing at best, and
dangerous at worst.

So, what can we do? The problem is that tuples are not descriptive as to what each
component of the tuple means. Records will solve this issue.

Brandon Wu From SML to OCaml 18 January 2024 32 / 65

SML: Record Types

Def A record is a value that contains multiple values, like a tuple, but each value
corresponds to a name, called a field .
So for instance, we might define a date type as a record, which gives specific
names to each of its fields:
type date = {

year : int ,
month : int ,
date : int

}

SML

We can simply construct a record using similar notation, with curly braces:

val new_year : date = { year: 2024, month: 1, date: 1 }

Brandon Wu From SML to OCaml 18 January 2024 33 / 65

OCaml: Record Types

In OCaml, the notation is similar, but with the semicolons for delimiters that OCaml
favors:
type date = {

year : int;
month : int;
date : int

}

OCaml

With values being constructed analogously:

let new_year : date = { year = 2024; month = 1; date = 1 }

Brandon Wu From SML to OCaml 18 January 2024 34 / 65

Anonymous and Declared Records

Given these small changes, it may not seem like OCaml records deserve special
note. The main difference between SML and OCaml records is that SML records are
anonymous, whereas OCaml records must be declared.

By anonymous, I mean that SML records are anonymous in the same way as tuples.
For example, the tuple type int * int is anonymous, as it doesn’t need to be
explicitly given a name, to be a type that can be used. It just exists.

Thus, with no prior type declarations, only the following SML code compiles, and
infers the type of x to be {a : int , b : string}:
val x = {a = 1, b = "hi"}

SML

let x = {a = 1; b = "hi"}

OCaml

Brandon Wu From SML to OCaml 18 January 2024 35 / 65

OCaml: Records and Type Inference

In the presence of a type declaration, OCaml will be able to infer the type of the
record safely. In the below example, the type of x is correctly inferred to be t:

type t = {a : int , b : string}
let x = {a = 1; b = "hi"}

OCaml

This means that, in order for OCaml records to be used effectively, it must always
be clear which type that a given record should be inferred to.

Remark In the above example, since there was a type with field a in scope, x was
inferred correctly to be of that type, with no annotations. If t were instead in a
separate module, however, we would need to help out the type system a bit and tell
it what module the record’s type is from.

Brandon Wu From SML to OCaml 18 January 2024 36 / 65

SML: Record Access

In SML, record fields must be accessed using either the record access operator, or
by pattern matching. For instance, the following are both legal ways to extract out
the field a:

val x = {a = 1, b = "hi"}
val 1 = #a x
val {a = num , ...} = x

SML

The second line conjures a function #a, which is inferred to have type
{a : int , b : string} -> int, in this context.

The third line deconstructs the record x, binding its field a to the name num. It then
uses an ellipsis to denote that it wildcards out the rest of the fields of the record.

Brandon Wu From SML to OCaml 18 January 2024 37 / 65

OCaml: Record Access

In OCaml, this looks slightly different. The record access operator is instead
achieved by taking the record, and using a dot operator, followed by the name of
the field to be accessed13. So this is translated to:

type t = { a : int , b : string }
let x = {a = 1; b = "hi"}
let 1 = x.a
let {a = num; _} = x

OCaml

In addition, instead of an ellipsis, we use the wildcard symbol _ to denote that we
don’t care about the rest of the fields.

13This seems small, but this is actually an incredibly convenient quality of life change for writing
OCaml code. A small change like making record access postfix makes it so much easier to use.

Brandon Wu From SML to OCaml 18 January 2024 38 / 65

Functional Record Updates

Feature OCaml also boasts the ability to create a copy of an existing record, with
one or more fields changed. This is called a functional record update.

For instance, suppose we have the following record:
type t = {a : int , b : string , c : bool}
let x = {a = 1; b = "hi"; c = true}

If we wanted to produce a copy of x with only the field a changed, we could use the
following terse syntax:

let y = {x with a = 2}

OCaml

Brandon Wu From SML to OCaml 18 January 2024 39 / 65

Functional Record Updates

In SML, you would have no choice but to state every field of the record again:

val y = {a = 2, b = #b y, c = #c y}

SML

This quickly becomes hugely untenable, especially for records which have many
fields.14

14This is one reason for why, as much as I love SML, I avoid records in many cases, because the
convenience of using it is so low. In OCaml, records are very easy to use.

Brandon Wu From SML to OCaml 18 January 2024 40 / 65

Records in Review

In summary, records are an enhancement of tuples that equips them with named
fields. They are extremely useful, especially for writing descriptive code which
remains clear to future maintainers, so it is advisable to be familiar with them.

In OCaml, they are much more convenient to use, in many respects, which partly
contributes to why OCaml feels better to use, as a developer.

Brandon Wu From SML to OCaml 18 January 2024 41 / 65

5 - Metaprogramming

Programming Languages and Metaprogramming

Def Metaprogramming is the technique of writing programs which themselves
modify programs. In programming languages, it usually refers to the practice of
being able to generate code from within the language itself.

There are many ways to metaprogram, including methods external to the language
itself. For instance, you could keep a script that prepends all relevant files with
certain frequently-used declarations, and call that a kind of metaprogramming.15

For an example of how metaprogramming is useful, consider the simple problem of
trying to print out a list.

In SML, this is a non-trivial problem, because there is the print function, but it has
type string -> unit. This means that, somehow, to print an int list, you
must be able to convert an int list into a string .

15The C language’s famous preprocessor can be used to do this, for instance.
Brandon Wu From SML to OCaml 18 January 2024 43 / 65

Printing Lists

The code for printing out an int list is not so involved.

fun show_int_list l = "[" ^ aux l ^ "]"
and aux [] = ""

| aux [x] = Int.toString x
| aux (x::xs) = Int.toString x ^ ", " ^ aux xs

In fact, we can even HOF-ize this, to print out arbitrary ’a lists:

fun show_list f l = "[" ^ aux f l ^ "]"
and aux f [] = ""

| aux f [x] = f x
| aux f (x::xs) = f x ^ ", " ^ aux f xs

Brandon Wu From SML to OCaml 18 January 2024 44 / 65

Printing Trees

This code was annoying to write, though. It’s nothing more than boilerplate, simple
code which just wastes time to write. It’s not even in the standard library.
What if we want to print out a tree? Well, now we need to write a new function:

fun show_tree f Empty = "Empty"
| show_tree f (Node (L, x, R)) =

"Node("
^ show_tree f L
^ ", "
^ f x
^ ", "
^ show_tree f R
^ ")"

This function is just plain ugly.

Brandon Wu From SML to OCaml 18 January 2024 45 / 65

An Excess of Boilerplate

Now imagine doing this for every single type that you declare, because none of
them come with their own printing functions.

A similar problem comes with if you want to declare a type that is used as a key in
some kind of dictionary.

There are two ways of doing this – you can either hash the key values and use a
hash dictionary, or come up with a total ordering function for the type, and use a
search tree of some kind. Both of these ways are rather involved, and involve an
immense amount of boilerplate.

Brandon Wu From SML to OCaml 18 January 2024 46 / 65

Type-Directed Code Generation

The key insight into solving the previously described issues is to see that it comes
right out of the type.

datatype tree =
Empty

| Node of tree * int * tree

Just by looking at the type definition of a tree, it is very obvious how to print it –
case on the constructors, and recurse on the components until you reach the end.

Thus, a sophisticated enough program should be able to read the type definition of
a tree, and generate the corresponding code, a function of type tree -> string
which pretty-prints a value of type tree .

This is precisely what ppx does. Let’s see how it works.

Brandon Wu From SML to OCaml 18 January 2024 47 / 65

ppx and Printing

OCaml’s ppx is a preprocessor framework, which allows for preprocessor libraries to
be written, which each implement a different kind of code generation. In this case,
we are interested in ppx_deriving , which includes the show plugin.
type tree =

Empty
| Node of tree * int * tree [@@deriving show]

OCaml

The source text only needs an [@@deriving show] annotation to be added to the
type definition, which then tells the OCaml compiler to invoke the plugin16. The
plugin will then generate two functions, named show_tree and tree_show , both
of which of type tree -> string .
It’s just that easy.

16This also requires that the file being compiled is actively built with the ppx_deriving.show
preprocessor, or the annotation will mean nothing.

Brandon Wu From SML to OCaml 18 January 2024 48 / 65

More on ppx

If this type definition were in a module ascribing to a given signature, you would also
attach the [@@deriving show] annotation to the signature, as well.

type tree [@@deriving show]

OCaml

In this case, suppose that the signature were to leave the tree type abstract. Here,
we are just saying that because we have derived the show function, the signature
also exposes the show_tree and tree_show functions.

It’s worth noting that deriving dependencies are transitive. If you are deriving show
on a type which uses another type, it will rely on having previously derived show for
the used type, as well.

Brandon Wu From SML to OCaml 18 January 2024 49 / 65

Deriving Deeper

We can do the same for a few other plugins, as well.

type t = A | B of int | C of string * int list
[@@deriving show , ord , hash]

OCaml

This demonstrates an arbitrary type t, which derives show for pretty-printing, but
also ord, which produces a function compare 17, which is a total comparison
function on values of type t. This makes it suitable for usage for using values of
type t as keys into a binary search tree, for instance.

We also derive hash, which derives a hash function for values of type t. This is
useful if we wanted to use these values as keys into a hash table.

17It’s compare and not compare_t , because this is how it is hard-coded to behave on types named
t.

Brandon Wu From SML to OCaml 18 January 2024 50 / 65

Conclusion

ppx is a very powerful framework for writing cleaner, simpler code through
preprocessor libraries, and in the case of ppx_deriving , it is an incredibly useful
labor-saving device.

Other languages like Rust and Haskell have similar mechanisms for deriving traits
and typeclasses, respectively, in a similar way to ppx_deriving .

You can also use ppx to write custom preprocessing libraries, so the sky is the limit.
This ends up providing a great deal of power in writing more expressive programs.

Brandon Wu From SML to OCaml 18 January 2024 51 / 65

6 - Binding Operators

An Introduction to Monads

Functional languages always end up making a big hubbub about monads 18.
Recall the signature of monads, a type class of a parametric type:

signature MONAD =
sig

type ’a t
val return : ’a -> ’a t
val bind : ’a t -> (’a -> ’b t) -> ’b t

end

We say that a structure implementing MONAD is a monad if it satisfies some laws:
• bind (return x) f ∼= f x
• bind m return ∼= m
• bind (bind m f) g ∼= bind m (fn x => bind (f x) g)

18This is not unfair, given that monads are extremely useful. However, commonly it is made out to be
far more complicated than it is.

Brandon Wu From SML to OCaml 18 January 2024 53 / 65

The Option Monad

Take the simplest useful monad, which is the option monad. We might implement
it in SML as:

structure OptionMonad : MONAD =
struct

type ’a t = ’a option

val return = SOME
fun bind opt f =

case opt of
NONE => NONE

| SOME x => f x
end

This monad is incredibly useful when dealing with several functions which might
return an option .

Brandon Wu From SML to OCaml 18 January 2024 54 / 65

Piping Functions

For our example, let’s just assume we have functions f : t1 -> t2 option ,
g : t2 -> t3 option , and h : t3 -> t4 option .

Then, we could write the following code:
fun pipeline (x : t1) : t4 option =

bind (bind (bind x f) g) h

Or, if we define an infix function >>= that has type ’a t * (’a -> ’b t) -> ’b t,
essentially a tupled version of bind :

fun pipeline (x : t1) : t4 option =
x >>= f >>= g >>= h

which looks much cleaner.

Brandon Wu From SML to OCaml 18 January 2024 55 / 65

Explicit Naming

This is not so bad, but this doesn’t give an explicit name to any intermediate result
of the pipeline. This is not always what we want, since we might want to use it at a
later point, for instance:

fun computation (file : string) (student: string) =
parse file
>>= (fn (_, gradesheet) => lookup student gradesheet)
>>= (fn grades =>

SOME ((sum grades) div (List.length grades))
)

(assuming parse : string -> (attendance * grades) option ,
lookup : string -> int list option , sum : int list -> int)

Brandon Wu From SML to OCaml 18 January 2024 56 / 65

Haskell and Syntactic Sugar

This is not so complicated to read, but the lambda and extra parentheses are not
helping. This can quickly become hugely untenable, given a lot of binds.
The Haskell programming language is quite fond of monads, and has its own special
syntax for using them in a neater way. The above example would instead be written
as:

do
(_, gradesheet) <- parse file
grades <- lookup student gradesheet
return ((sum grades) / (length grades))

end

This looks quite similar, but avoids a level of parentheses (and indentation) by
moving the binding of the grades variable to before the computation it is binding,
as opposed to after. This is a huge readability win.

Brandon Wu From SML to OCaml 18 January 2024 57 / 65

OCaml: Custom Binding Operators

In OCaml, you can do something similar, by defining custom binding operators.

There are no do blocks in OCaml, but a do block is really just a spicy list of
declarations. A binding operator will just be an enhanced let-binding:

let (let*) = OptionMonad.bind

let computeAverage (file : string) (student: string) =
let* _, gradesheet = parse file in
let* grades = lookup student gradesheet in
Some (sum grades / (List.length grades))

OCaml

Here, we use the let* binding operator, which we have defined to be the same as
OptionMonad.bind.

Brandon Wu From SML to OCaml 18 January 2024 58 / 65

Binding Operator Translation

Concretely, if we say that let* is defined to be the same as some function f : ’a
-> (’b -> ’c) -> ’d, then the following are equivalent:

let* x = e in
e2

and
f e (fun x -> e2)

Basically, let* implicitly calls the equivalent function, and implicitly put the rest of
the code after the in into a lambda, which is passed to it.

Brandon Wu From SML to OCaml 18 January 2024 59 / 65

6 - Conclusions

OCaml in Review

Overall, OCaml ends up being a language which is very similar to Standard ML, but
with just a few things that make it feel much better to use.

Despite seeming inconsequential, these small improvements add up, from a
developer’s perspective! Two features, functional record updates and postfix record
access, are really all that is necessary to make OCaml records much more usable
than SML records.

Aside from language features, OCaml’s ecosystem also boasts some other nice
accommodations, including a debugger19, a package manager, a testing framework,
and several open-source libraries.

19Though there’s one now for SML.
Brandon Wu From SML to OCaml 18 January 2024 61 / 65

https://github.com/brandonspark?tab=repositories

Simplicity and OCaml

There are far more differences between the two languages that I neglected to write
about (polymorphic variants, first-class modules, objects and classes, variance,
applicative functors, GADTs, etc...). This was intentional.

My belief is that OCaml occupies a valuable niche in programming languages where
it is broad, but all of the breadth is opt-in. That means that, while complex language
features exist, they are discouraged, and you don’t ever have to deal with them if
you don’t want to.

I regularly say that when writing OCaml code, I only use around seven distinct
language features, or forms of syntax. While naysayers believe functional code to
be more complicated, it does not need to be at all. I believe that OCaml is a very
easy language to write simple code in.

Brandon Wu From SML to OCaml 18 January 2024 62 / 65

Languages and Complexity

There are respected languages like Haskell and Rust, which are themselves
functional in nature as well. Unfortunately, they occupy a niche where they remain
complicated by default.

In Haskell, extensive monad usage and excessive abstraction (to the point of
convolution) are the norm, and Rust code requires understanding of lifetimes and
memory management, making writing code more complicated. These are baseline
thresholds which cannot be lowered – they are always present.

Like with mutability, we should leave complexity as an opt-in feature. Complexity is
only as complexity is warranted.

Brandon Wu From SML to OCaml 18 January 2024 63 / 65

More OCaml Resources

Further resources that can help with learning OCaml include:

• the 99 problems provided on the OCaml website, with solutions included.
• the book Real World OCaml, which recently came out with a new edition
• CS3110’s online course materials on OCaml

I am also going to be working on a lecture series for OCaml programming, hopefully
to debut in 2024. Feel free to follow me on Twitter or check my website to keep up
with material as I release it.20

20I have not yet set up a mailing list.
Brandon Wu From SML to OCaml 18 January 2024 64 / 65

https://v2.ocaml.org/learn/tutorials/99problems.html
https://dev.realworldocaml.org/
https://cs3110.github.io/textbook/cover.html
https://twitter.com/onefiftyman
https://brandonspark.github.io/

Thank you!

	Overview
	Concrete Syntax
	Augmented Arguments
	Records
	Metaprogramming
	Binding Operators
	Conclusions

