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1 - Structures and Namespaces



Organizing Software

So far we have explored the core SML language features that let us write interesting
functions.

We’ve seen functions and datatypes, exceptions and variables, and many
applications thereof. These are essential for the purpose of solving interesting
problems, but what about problems that are not strictly computational?

Code is not just meant to be written, it is meant to be used, documented, and
organized. We are interested in the problem of organizing software.
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Namespaces

One particular idea for organizing software is the idea of namespaces.

Def A namespace is a particular group of defined elements which live separately
from others. In a programming language, there will usually be ways of referring to
different namespaces, to separate out used names from each other.

For instance, we exhibit this with the syntax that we have used so far, with names
such as List.length and Int.compare . The compare function lives in the
namespace associated to Int, and the length function lives in the namespace
associated to List .

Note This means there could be definitions of the same name in different
namespaces! We could have separate List.compare and Int.compare functions.
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Structures

It turns out that List and Int are just examples of what SML calls modules, or
structures.

Def A module or structure is a grouping of declarations underneath a particular
name.

For instance, we could write the following syntax:
structure Foo =

struct
datatype t = Bar of int
val x = Bar 5
exception E of t

end

such that the names t, Bar, x, and E are entirely local to the structure Foo.
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Separation of Concerns

This means that outside the structure, we could write:
val y = Foo.Bar 1
val z = raise Foo.E y

to access the inner contents.
This is helpful for when we’re working with many definitions, and we want to group
them distinctly! For instance, we might be interested in functions specific to a
particular part of our codebase. With modules, we can group domain-specific logic
under the module for that specific application.
Note Because modules can contain exceptions and types, and their components
can be referred to by name, they are more powerful than just simple tuples, which
can only contain values organized by position!1

1Technically, SML has a notion of records, which are tuples with fields organized by name. But
records also can only contain values, and not things like types.
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A Collection of Definitions

How does this differ from just organizing the contents of modules into their own
files? For one, files do not promote their own personal namespacing in the same
way as modules. If we have two files, with contents:

val x = 2

val y = 3

then loading both of these SML files will result in an environment containing both x
and y. We want to be able to separate out unrelated parts by more than just the file
they are located in.

But, modules share the same drawbacks as files in other senses. Both are just
collections of definitions, at the end of the day. Consider the problem of the msort
function.
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An Example File

fun split [] = ([], [])
| split [x] = ([x], [])
| split (x::y::xs) =

let
val (A, B) = split xs

in
(x::A, y::B)

end

fun merge ([], R) = R
| merge (L, []) = L
| merge (x::xs , y::ys) =

case Int.compare (x, y) of
LESS => x :: merge (xs, y::ys)

| _ => y :: merge (x::xs, ys)

fun msort [] = []
| msort [x] = [x]
| msort L =

let
val (A, B) = split L

in
merge (msort A, msort B)

end

Here’s an example of a potential SML file, call it msort.sml.
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Namespace Clutter

The pitfalls of packaging code as just a collection of definitions is that there’s no
way to be clear about which parts are important!

The definition of msort relies on two helper functions, merge and split . We
cannot avoid writing these functions, but because they are written at the top-level,
loading this SML file will also load those functions into the namespace automatically.

This causes namespace clutter, because now we have introduced two definitions
for merge and split , when we only wanted them for the purpose of writing msort !
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A Local Approach

One way to get around this is with something called a local definition.
This looks like:

local
fun split L = (* ... *)
fun merge (L1, L2) = (* ... *)

in
fun msort [] = []

| msort [x] = [x]
| msort L = (* ... *)

end

This form makes it more clear where the dependencies are. But it’s also a burden on
the writer of the code! We’d like a solution which ideally doesn’t burden the source
code.
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What’s in a File?

Additionally, we want to make it very clear to a user of a library, what the contents
of the library are, and what it approximately does. How can we somehow convey
the contents of a collection of code, without necessarily needing to alter the source
significantly?

We could just write this at the top of the file, for instance:
(* This file contains ‘msort : int list -> int list ’ *)

(* IGNORE *)
fun split L = (* ... *)
fun merge (L1, L2) = (* ... *)
fun msort L = (* ... *)

But now, what happens if we refactor our code?
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What’s in a File?

(* This file contains ‘msort : int list -> int list ’ *)

(* IGNORE *)
fun split L = (* ... *)
fun merge cmp (L1, L2) = (* ... *)
fun msort cmp L = (* ... *)

Suppose that we change our implementation of msort , to one which is now
msort : (’a * ’a -> order) -> ’a list -> ’a list.

Well, now we have to go and change our documentation! Our comment isn’t actually
checked for accuracy, so it might be the case that it gets outdated. We can’t
necessarily trust documentation, because it’s not verified by anything.
Can we do better?
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An Interface

Idea What if we had an interface for our file that was checked by the compiler?

What kind of information are we interested in having present in this interface?

We will check for:
• the presence of certain declarations
• the type of value bindings within the file

This is the idea of a signature.
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2 - Signatures and Interfaces



Signatures

Def A signature is an SML construct, consisting of a collection of specifications
for things such as types, values, and exceptions.

Here is an example of a signature we could have for a module containing our msort
code, instead of putting it into a separate file msort.sml:

signature MSORT =
sig

val msort : (’a * ’a -> order) -> ’a list -> ’a list
end

By convention, we usually put the name of a signature in all-caps.

This is the signature of a module which publicly contains just a single value, which is
a function msort of type (’a * ’a -> order) -> ’a list -> ’a list.
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A Module for msort

Suppose we wanted to define our new shiny Msort module. We might write:
structure Msort =

struct
fun split L = (* ... *)
fun merge cmp (L1, L2) = (* ... *)
fun msort cmp L = (* ... *)

end

Now, we can access our msort function via Msort.msort .

But, we haven’t yet looped in our MSORT signature! This means that as currently
written, we can still write Msort.split and Msort.merge . We also don’t have any
check that msort is truly of type
(’a * ’a -> order) -> ’a list -> ’a list.
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Ascription

Def The act of specifying that a module should implement a given signature is
called ascription.

To ensure that our Msort module has to be compatible with the MSORT signature,
we have to perform ascription. We write it like this:

structure Msort : MSORT =
struct

fun split L = (* ... *)
fun merge cmp (L1, L2) = (* ... *)
fun msort cmp L = (* ... *)

end

This means that, after this ascription, the only declarations that are visible within
Msort from a user are the declarations contained within the MSORT signature!
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Ascription and Typechecking Types Guide Structure

This means that we cannot use Msort.split or Msort.merge , because we’re
restricted to knowledge of the interface.

The other great advantage of ascription is that it only succeeds if all of the
declarations that are present in the signature are present in the structure, and the
declarations in the structure must have consistent types with those in the signature.

So if we implemented msort with any type other than
(’a * ’a -> order) -> ’a list -> ’a list, the program would fail to
compile. This means that our interfaces are not just well-specified, but significantly
stronger than comments. They are guaranteed to be safe.
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3 - Abstraction



Abstraction Boundaries

One of the greatest wins in computer science is the idea of abstraction.

This means, essentially, deliberately forming higher-level models of things which
ignore irrelevant details. This helps us a lot in understanding things with our human
brains. For instance, we choose to think about evaluation of expressions, rather
than flipping of bits in computer hardware.

At the software level, abstraction abounds as well. We want to choose to ignore the
parts of implementations that do not matter to us. This is the entire point of
specifications.

Signatures and structures offer us a way to enforce this idea of abstraction.
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An Abstract Sort

The way that we defined MSORT and Msort earlier are actually in violation of this
idea of abstraction!
Consider the signature MSORT :

signature MSORT =
sig

val msort : (’a * ’a -> order) -> ’a list -> ’a list
end

Why is it important to me, as a user of this sorting library, that it is implemented as a
merge sort? The reason why I am using it is that I want a sorted list – but the
concrete implementation details do not matter to me.2

2The astute reader might raise complaints about how it may be important to know the run-time
complexity of the sorting function. Merge sort isn’t the only O(n logn) sorting algorithm out there,
though, and generally when using a library, you should be able to trust that the authors implemented it
in a vaguely efficient way.
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Abstracting Implementation

Here’s a better signature:
signature SORT =

sig
val sort : (’a * ’a -> order) -> ’a list -> ’a list

end

We changed very little, but the idea is that we want to remove as many irrelevant
details as possible from the users of the library! They want a sort, and they get a
sort. The name is suggestive enough.
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Alternate Implementation

Another reason for doing this, is that we might define multiple sorting libraries, and
we want them to ascribe to a common signature! So now, we can also define a
InsertionSort module:

structure InsertionSort : SORT =
struct

fun sort cmp L = (* ... *)
end
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4 - Information Hiding



Types in Structures

Recall that structures can also contain types. Consider a signature which describes
a library for sets of integers.

signature INTSET =
sig

type t

val empty : t
val insert : int -> t -> t
val remove : int -> t -> t
val mem : int -> t -> bool

end

We call the type t in this signature abstract, because it is left unspecified!
Structures which implement this signature (or ascribe to it) can choose whatever
representation they want.
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Types in Structures

Consider a structure which implements INTSET with lists.
structure IntSet : INTSET =

struct
type t = int list

val empty = []
fun insert v [] = [v]

| insert v (x::xs) =
if v = x then x::xs
else (x :: insert v xs)

fun remove v [] = []
| remove v (x::xs) =

if v = x then xs
else (x :: remove v xs)

fun mem v [] = false
| mem v (x::xs) = v = x orelse mem v xs

end
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Opening Up

Note The open keyword allows you to open all the things in a module into the
enclosing scope.
The important thing is the line type t = int list .
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Transparent Ascription

The type of ascription we showed you earlier is called transparent ascription.

The key thing that it does is that, even though the type of t in the signature INTSET
is unspecified, transparent ascription makes it so that the type of IntSet.t is
publicly known to be int list.

This is really bad.
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I’m Gonna Wreck It

Because IntSet.t is the same as int list, it is OK to write the following:
val set : IntSet.t = [1, 1, 1, 1]

val set_without_1_i_promise = IntSet.remove 1 set

val _ =
if IntSet.mem 1 set_without_1_i_promise then

destroy_universe ()
else

dont ()

This code destroys the universe.3

3Sometimes that happens.
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Invariant Violation

What happened here? We violated an invariant.

The IntSet library was carefully constructed so that by using empty , insert , and
remove , every set would act like a set – in particular, mem x (remove x S) ∼=
false . Every set should have precisely at most one entry for each integer.

When outside users of the library know how it’s implemented, they can violate this
invariant! This means if there was code somewhere which relied on receiving an
IntSet.t, we could mess them up.

So how do we prevent this?
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Opaque Ascription

The converse to transparent ascription is called opaque ascription.

Def Opaque ascription is transparent ascription, but any abstract types in the
signature are unknown to users of the structure.

structure IntSetOpaque :> INTSET =
struct

type t = int list

val empty = []
(* ... *)
fun mem v [] = false

| mem v (x::xs) = v = x orelse mem v xs
end

Here’s how we write it.
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Invariants, Invincible Types Guide Structure

In the resulting structure IntSetOpaque , users of the module have no idea that the
type IntSetOpaque.t is int list, and the compiler will enforce that. The
compiler will fail to recognize that IntSetOpaque.t is the same as int list. We
have hidden the fact that the IntSetOpaque library is implemented with lists.

This means that now it is impossible to obtain a value of type IntSetOpaque.t
without going through IntSetOpaque.empty , IntSetOpaque.remove , or
IntSetOpaque.insert . This means that now it is provably impossible to ever
break our set invariant.

That’s pretty neat.
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Using Opaque Structures
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Using Opaque Structures

Now, we cannot see what the type t is at all, and it will not type-check if we try to
declare a list to be of type IntSetOpaque.t.
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On Users and Maintainers

Again, this might seem strange. We just implemented IntSetOpaque as an
int list like five minutes ago, what do you mean we don’t know it’s an int list?

The idea is that signatures are for the user, and structures are for the maintainer.
The user of a library should only have to know things which are in the interface, and
the implementation details are left to the maintainer, in the structure.

Being a programmer is a tenuous dance, because you’re both. You implement
libraries that you end up using, meaning you are both consumer and producer. Why
is this important?
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On Users and Maintainers

There are several advantages to being able to close your eyes and think like a user,
rather than a maintainer:

• it lightens your conceptual load. Instead of thinking about the implementation
of insert , remove , and co, you can think intuitively about what a set is.

• it prevents you from breaking your own invariants. If you set your invariants
ahead of time, and design your API so you can never break it through the
interface, then being unable to access the representation from outside the
library prevents you from mangling your invariants later.

• it helps youmaintain your code. If you later decide to refactor your code to use
a different representation, such as a int tree, you don’t need to touch any of
the code outside of the module, so long as you adhere to the original interface.

SML’s ability to enforce that you don’t break this abstraction layer is one of the most
powerful benefits that it provides.
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5 - Representation Independence



Thinking Conceptually

So far in this course, we’ve trained our brains to be like mini-SML interpreters, such
that we generally understand the stepping that SML programs will do, when we
feed them into SML/NJ.

Something that has been mentioned several times in the past, however, is that this
is ultimately inefficient! We can’t think about stepping arbitrarily complex
expressions in our head, because it will become too much mental load.

A more powerful tool we’ve relied on is using invariants, and in particular ENSURES
postconditions, to reason about why recursive functions should be correct.

With representation independence, we can do even better. We can rely on pictures
to reason about our code.
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Thinking Conceptually

For instance, take the following code:

IntSet.insert 3 (IntSet.insert 2 (IntSet.insert 1 IntSet.empty))

Which is easier to think about – this:

mulligan trace

or this?

{} {1} {1, 2} {1, 2, 3}insert 1 insert 2 insert 3

Brandon Wu Modules I: Structures and Signatures 06 July 2023 40 / 52

https://asciinema.org/a/x3HwtfZyK6TYkDQ9eA1NztuVR


Thinking Conceptually

Due to opacity disallowing visibility into what the code is really doing, it ends up not
mattering how the structure is actually implemented, so long as it behaves the way
that it should.

This is the ultimate form of the duck test – if it walks like a duck, swims like a duck,
and quacks like a duck, then it’s probably a duck. In this case, if it behaves like a set,
you can think of it like a set.

Now, instead of thinking of the code stepping in great detail, we just think of the
picture in our head, of a set.
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Thinking Conceptually

This will lead to a related concept called representation independence.

Def Representation independence is the phenomena where use of a library is
independent of how it is represented. Ideally, any library involving an abstract type
should be representationally independent.

For instance, let’s think of the difference between the following two code fragments:
IntSet.insert 2 (IntSet.insert 1 IntSet.empty)

IntSet.insert 1 (IntSet.insert 2 IntSet.empty)
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Sets, Transparently

In terms of the concrete behavior of the function, we can see the actual value used
to represent both, via using IntSet transparently:

We see that the actual value we obtain in either case, when we expose the inner
representation, is [1, 2] and [2, 1].
Obviously, at this point in the course we recognize that those are different values.
What gives? Isn’t that an issue, since they are supposed to represent the same set?
The answer is no, and it’s precisely because of this representationally independent
thinking. Instead of thinking of values, we can group the values of the
implementation into representationally equivalent classes, such that no two values
in the same equivalence class can be distinguished.
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Representational Equivalence Classes

The picture might look like this:

[1]

{1}

[1, 2]
[2, 1]

{1, 2}

[1, 2, 3]
[1, 3, 2]
[2, 1, 3]

...

{1, 2, 3}

false true

IntSet.insert 2 IntSet.insert 3

IntSet.remove 2 IntSet.remove 3

IntSet.mem 2
IntSet.mem 0

IntSet.mem 2

IntSet.mem 1
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Representational Equivalence Classes Programmatic Thinking is Mathematical Thinking

The previous image had many4 nodes and edges missing from it, but the basic idea
is that the circles denote the representational equivalence classes for values which
cannot be distinguished, from outside the structure. They all denote the same basic
mathematical set, which labels the circle at the top.

This means that you can transform values within the classes into other classes via
edges that correspond to functions like IntSet.insert and IntSet.remove , and
no matter what the actual precise value is, it will still respect the equivalence
classes and their arrows.

In other words, you can define a relation on values, showing that they must always
produce equivalently related values, from the same operations.

4In fact, infinitely many.
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Representation Independence for Trees

This is a generalizable idea, however! This kind of diagram isn’t specific to lists, it
might apply to any structure which chooses to implement INTSET , and does it in a
faithful way. For instance, suppose we had implemented IntSet using trees.

So now we might be able to draw a different picture, of what the same diagram
looks like if we had implemented IntSet with trees. Note that for brevity, Node has
been shortened to N, and Empty to E:
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Representational Equivalence Classes (Trees)

N(E, 1, E)

{1}

N(N(E,2,E),1,E)
N(E,1,N(E,2,E))
N(N(E,1,E),2,E)

N(E,2,N(E,1,E))

{1, 2}

N(N(E,1,E),2,N(E,3,E))
N(N(E,2,E),1,N(E,3,E))
N(N(E,3,E),1,N(E,2,E))

...

{1, 2, 3}

false true

IntSet.mem 2 IntSet.mem 0

IntSet.mem 2
IntSet.mem 1
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Representation Independence Between Types

In a sense, the fact that these relations can be defined for different implementations
of the same signature, even with completely different representations,
demonstrates how thinking conceptually about the mathematical object being
represented is valid.

Once you are able to think in a representationally independent way, it’s clear that it
shouldn’t matter at all that the values even came from the same structure! Even if
it’s represented as a tree, rather than a list, the equivalence classes and behavioral
equivalences still apply.

The most important part of this is that then, we can use this idea of
representationally equivalent classes to prove that two implementations, even with
differing representations, are equivalent. Visually, we smush the two diagrams
together:
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Representation Equivalence Classes Between Types

N(E, 1, E)

[1]

{1}

N(N(E,2,E),1,E)
N(E,1,N(E,2,E))

...
[1, 2]

[2, 1]

{1, 2}

N(N(E,1,E),2,N(E,3,E))
N(N(E,2,E),1,N(E,3,E))

...
[1, 2, 3]
[1, 3, 2]

...

{1, 2, 3}

false true

IntSet.mem 2
IntSet.mem 0

IntSet.mem 2
IntSet.mem 1
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Relating Representations Programmatic Thinking is Mathematical Thinking

The ultimate point is that we can write a relation R(s1, s2) such that
s1 : IntSetList.t and s2 : IntSetTree.t, and prove that the relation is
preserved by all of the operations in the signature, starting from
IntSetList.empty and IntSetTree.empty .

If we do this, then we prove that no matter what you do, it is impossible from
outside of the structure to distinguish the two implementations. There is no
sequence of operations that can ever give non-agreeing answers.

The basis of the proof conceptually consists of relating values from the same
equivalence class, so for instance we could say that
R([1, 2], Node(Node(Empty , 1, Empty), 2, Empty)) holds. This entails
that IntSetList.mem and IntSetTree.mem must agree, for any int, on them, and
that the removing or adding elements to either preserves the relation.
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Conclusion

This may seem like a lecture with few practical applications, but these ideas are
extremely profound in terms of how you should think about software development.

The ML module system is one of the most sophisticated out of any programming
language that there is, and lots of ideas in it are applicable elsewhere. Being able to
cleanly separate your implementation from your interface is essential when doing
any kind of programming.

Abstract types are essential for architecting a safe interface that cannot be
violated, even by yourself. Although it’s tough to see the benefits without working
on the components of a software project yourself, the ability to conceptually and
programmatically separate yourself from the implementation is amazingly helpful.
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Thank you!
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