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1 - Lazy Evaluation



A First For Everything

Consider the following simple SML function:
fun fst (x, y) = x

This is usually a pretty standard function to have around, for instance if you want to
get out the first component of a tuple without pattern matching (for instance, if
you’re doing a pipe chain).

Question: What is the behavior of the expression fst (1, 1 div 0)?
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Waste Not

Answer: It raises Div.

Recall that this is due to the fact that SML is a eagerly evaluated language, and the
arguments to functions are always evaluated to values, if possible, before stepping
into the body of the function.

But this is kind of silly, right? We wanted the first component of this tuple. It
shouldn’t matter whether the second component raises an exception – our code
was only concerned with the first part.

The same thing would happen even if the second component didn’t loop forever or
raise an exception, but instead took a very long time! For instance,
fst (1, horribleComputation 2 4) would similarly take a long time. 1

1By my reckoning, 3 years.
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Want Not

Or, if we performed map f L on a list, but only used the first few elements.

This doesn’t stop the fact that the map function always fully commits, and applies
the function f to each element of the input list. It doesn’t know anything about
whether the result will be used, it’s simply following the rules of eager evaluation.

The theme is the same – we want not to do work if we can avoid it. We want to only
have to do a computation if we have to. In other words, we want to be lazy.

Brandon Wu Lazy Programming 25 July 2023 6 / 51



Lazy Evaluation

Def Lazy evaluation is a schema of evaluation opposite to that of eager evaluation.
In lazy evaluation, instead of evaluating expressions at val bindings and function
invocations, we only evaluate expressions when their value is needed.

So for instance, the following:
val L = [999, 998, 997, 996, 995]
val res =

List.foldl (fn (x, acc) => fact (fact (x * acc))) 1 L

would run almost instantly, if SML were to be a lazy language. This is because under
eager evaluation, we would instantly evaluate the right-hand side of res, which
takes approximately between ludicrously long and forever.
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Lazy Variables

Under lazy evaluation, we have to do no such thing, however! We can instantly bind
res, by binding it to the verbatim expression of its RHS.

A way to think of the conceptual difference between lazy and eager evaluation is
that in an eager language, variables can only be bound to values, which cannot
further be simplified. In a lazy language, variables are bound to expressions, which
are simplified upon forcing the expression.

For instance, if we tried to evaluate this code in the context of the previous slide:
case res of

0 => 1
| _ => 2

then, we would be forced to evaluate the expression that res is bound to, because
we want to see what value it has.
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The Problems with Laziness

Laziness seems great. You only ever need to pay for what you need – wasted
computation is impossible. There’s some technical details around implementation
that warrant a little more special consideration, but otherwise it seems like a good
deal.

The problem with laziness comes with a lack of predictability.

Brandon Wu Lazy Programming 25 July 2023 9 / 51



A Lazy Exchange

Consider the following scenario in a lazy programming language. You have
implemented an API which returns to a user an int list.

A consumer reads your documentation, believes it’s just what they need for their
project, so they pull down your code and invoke your function and bind the result to
a variable. They then proceed on their merry way.

120 production hours later, their web server crashes due to an unexpected error.

The list that you handed them was [raise Div , raise Div , raise Div].
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A Lazy Exchange

This might seem like a ridiculous example, but the point is that in a lazy language, all
data exchange can be completely arbitrary computation!

In an eager language, if you are able to receive an output and bind it to a variable,
you are guaranteed that you are holding real data. In the case of the poor consumer,
they were handed a list of three ticking time bombs. These time bombs were only
revealed 120 hours later, when the elements of the list were presumably actually
accessed and forced.

This can make nightmarish bugs arise, because ultimately computation is
unpredictable. You have no idea when a value will be forced, because it could
happen now or many hours later.

Brandon Wu Lazy Programming 25 July 2023 11 / 51



Lazy Performance

It doesn’t even need to be a list of raise Div, this also has implications for
determining performance. You could be handed a list of expressions, all of which
take quite a while to evaluate. Now, in applications where you can’t necessarily
afford to wait around for several seconds, you need to be careful any time you case
on an expression.

You also ultimately get that functions like map f are constant time, and it’s only
when they are forced that a linear cost in f comes about. This makes it very difficult
to give performance a rigorous treatment. 2

2Lazy languages also don’t have sum types. This is of absolutely no relevance to anyone in this
course, but I’m obliged to say it.
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What’s The Point?

Well, that’s a lot of negatives. SML is an eager language anyways, so what’s the big
whoop? Why are we talking about lazy evaluation?

What does binding a variable to something which encodes a computation without
actually evaluating it sound like?

Suppose we wanted to mimic something which in a lazy language looked like this:
val res = map f L

Recall the idea of a lambda function as a suspension:
val res = fn () => map f L

It turns out, we can mimic laziness in an eager language, just by using lambdas.
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Thunks

Def A thunk3 is a value of type unit -> t, for some type t, also called a
suspension.

For any expression e, we can turn it into a thunk by simply encasing it within a
lambda expression. Recall that lambda expressions freeze the contents of their
bodies, meaning that no evaluation happens until the lambda is given an argument!

Key Lambdas suspend the contents of their bodies until the function is actually
called.

By convention, that lambda usually just takes in a unit argument, since we don’t
really care about doing anything with its input, we just want to prevent the
computation.

3Yes, this is a technical term.
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The Benefits of Laziness

Laziness has a lot of problems, but that is only when it is on by default!

Something we will see, in this lecture and the next, is that language features are
generally better when they are opt-in. Programmers should have full control over
what behavior they want, and shouldn’t be forced into something contentious.

The great strength of an eager language is that we can simulate laziness, by putting
computations into a lambda, which is to be evaluated at a later time.

This way, we can take advantage of the benefits of laziness, such as not needing to
compute things until we need to and not wasting computation, without suffering the
disaster of having it on all the time!
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2 - A Lazy Structure



A Lazy Type

In fact, this idea is so powerful that it will warrant its own module, and type.

signature LAZY =
sig

(* The type of lazy suspensions of type ’a. These are
computations which may return an ’a.

*)
type ’a t

val lazy : (unit -> ’a) -> ’a t
val force : ’a t -> ’a

end
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A Lazy Module Types Guide Structure

Here, the type of Lazy.t is kept abstract, to signal a type-level distinction between
this idea of suspended computations versus actual values.

structure Lazy :> LAZY =
struct

type ’a t = unit -> ’a

fun lazy f = f
fun force f = f ()

end

In reality, the type of ’a t is exactly equivalent to unit -> ’a, so the lazy
function doesn’t "really" do anything.
But to the user of the library, they don’t know that. The point is that this kind of
conceptual separation is useful, because it helps us segment our thinking.
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A Lazy Example

So for instance, in the following code:
val L = List.tabulate (100, fn i => lazy (fn () => i * i))

the produced list L is a int Lazy.t list, where the ith entry is a suspension of
the ith square number, that can be forced at a later time. This way, we avoid
computing all of the squares up front, in case that we don’t actually need all of them.

This example is reasonably contrived, but lazy values can be very useful for certain
kinds of computations that may be needed later but are costly to do all at once,
such as when reading from files.

Usually, lazy values are also memoized, which means forcing them only ever
computes the expression once, and then saves the result for future forces. This
implementation omits that, but this is the general practice.
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3 - Infinite Data Structures



An Industrial Example

Suppose that the CEO of your company comes into the room, and tells you she
wants all the integers.

You tell her, boss, I don’t know if you know this, but the integers are infinite.

She says actually yes, she was perfectly aware of that, and was she going crazy or
did she hear something which sounded like talking back to her.

You tell her you’ll try your best.
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Don’t Do This At Home

The situation is not dissimilar to the following:

The key issue at hand here is that the integers are infinite, and thus computing
all_the_integers loops forever.
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I Reject Your Reality

The integers are nicely mathematically defined, however. It’s a real shame that we
should be limited by silly concerns like "lack of infinite amounts of space", and thus
be unable to store all of the integers.

It’s impossible to have infinitely many processors too, though.4 We don’t usually let
silly things like physical impossibility get in our way – can we figure out something
here too?

4citation needed
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Infinite Data Structures

This leads us into an idea called infinite data structures.

Def An infinite data structure is a kind of data structure that may store infinitely
many entries, without looping forever.

The memory concern is still a legitimate one, though. We can’t possibly store an
infinite number of numbers at once, so what can we do?

The key to encoding infinite data structures will be in using laziness, to compute
entries only as we need them.
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Lazy Lists Recursive Problems, Recursive Solutions

Our first data structure will be the lazy list. Recall that we could define our own type
of lists via the following:

datatype ’a list ’ = Nil | Cons of ’a * ’a list ’

which would be totally equivalent to our native type of ’a list.

We can define lazy lists as follows:
datatype ’a llist = Nil | Cons of ’a * (unit -> ’a llist)

Whereas a list is either empty or a value and another list, a lazy list is either empty
or a value and a suspension of another lazy list.
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Lazy Lists

What does that mean? It means that when forming a value of type ’a llist , we
don’t ever need to go and come up with the lazy list that comes afterwards – we just
need to provide a lambda that computes it.
By our analogy from CPS lecture, we just provide instructions that tell us how to
make the rest of the lazy list.
Here are some examples of values of type t llist :
• Nil : ’a llist
• Cons (1, fn () => Nil) : int llist
• Cons (1, fn () => Cons (2, fn () => Nil)) : int llist
• Cons (1, fn () => loop ()) : int llist

Notably, the last value is indeed a value, but trying to get the second element of the
list will cause an infinite loop.5

5That’s how it is, sometimes.
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Constructing Lazy Lists Recursive Problems, Recursive Solutions

Part of the point of lazy lists is that usually, instead of writing them down in a finite
amount of space, we will construct lazy lists via recursive functions.

Let’s see how we might define the natural numbers using lazy lists:
fun natsFrom n = Cons (n, fn () => natsFrom (n + 1))
val nats = natsFrom 0

Here, we define first a helper function natsFrom , which defines a lazy list of all the
natural numbers, from some starting point. Then, we just start at 0.

Note that because the recursive call to natsFrom is within a thunk, there is no
looping forever here! For that same reason, we don’t need a base case, either.

Brandon Wu Lazy Programming 25 July 2023 27 / 51



Constructing Arbitrary Lazy Lists

Suppose that we were interested in tabulating a lazy list from an arbitrary function.
We might define a function tabulate with the following specification:

lazyTabulate : (int -> ’a) -> ’a llist
REQUIRES: true
ENSURES: lazyTabulate f evaluates to the lazy list where the ith element is
f i

fun lazyTabulateFrom f i =
Cons (f i, fn () => lazyTabulateFrom f (i + 1))

fun lazyTabulate f = lazyTabulateFrom f 0
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Constructing Arbitrary Lazy Lists

Let’s try it on a specific use case.

val lazy_list = lazyTabulate (fn i => 1024 div i)

This lazy list purportedly contains all the results of dividing 1024 by the natural
numbers.

Unfortunately, there is one thing working against us, here, which is that 0 is a
natural number!

Are we OK, though, since this is a lazy list? It turns out no, because while our list is
lazy, attempting to bind lazy_list immediately raises Div.
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Thresholds of Laziness

It turns out that our notion of lazy lists is indeed lazy, but not lazy enough.

Even if there is an element in the lazy list that should raise Div upon being forced,
merely constructing the value of lazy_list never expresses intent to force that
element!

Or, put another way, we never once explicitly said we wanted to look at the
elements of the lazy list, so why should constructing the lazy list raise an exception
on us?

In the next section, we’ll see an improvement on lazy lists we call streams, which
will help with this issue.
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4 - Maximal Laziness and Streams



Maximal Laziness

To solve our problem, we need a new kind of data structure.

Def A maximally lazy data structure is one which does not compute any element
until it is absolutely needed.6

We will develop a new type of lazy list called a stream , which side steps these
issues by being maximally lazy. We can define a stream via two mutually recursive
data types:

datatype ’a stream = Stream of (unit -> ’a front)
and ’a front = Nil | Cons of ’a * ’a stream

Note that we use the and keyword here, which allows two mutually recursive types
to see each other, irrespective of the order in which both are declared.

6There will be a formal definition of this on the homework which is slightly different, but this
definition will suffice to get us through the intuition.
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Streams and Fronts Types Guide Structure

Conceptually, what’s the idea behind a stream and a front?

Key A stream is a delayed front.
Key A front is an exposed stream.

A stream is opaque – the only thing you can do with a stream is force it. This solves
our issue from lazy lists, as instead of making lazy lists (which have the first element
forced by default), we make streams.

A front is a stream which the user has expressed intent to force. The only way to
obtain a front is to deliberately try to force a stream. The front has the actual
pattern-matching data associated with it though, which may produce another
stream.
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Literally STREAM ing

We will have another structure for dealing with streams. This one will similarly have
another an abstract type hiding the inner implementation.

signature STREAM =
sig

type ’a stream
datatype ’a front = Empty | Cons of ’a * ’a stream

(* more ... *)
end

These types are implemented exactly the same as the ’a stream and ’a front
we saw earlier! We just hide the definition of ’a stream so it simply operates as an
abstract idea of some suspended list, which may be forced to look at its contents as
a ’a front .
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A Stream Structure

We will now look at some of the residents of the Stream structure. There are more
functions, which are available at the online 150 documentation, but we will not get
to all of them.

For the rest of the lecture, assume we are working within the Stream structure,
defined as:

structure Stream :> STREAM =
struct

datatype ’a stream = Stream of (unit -> ’a front)
and ’a front = Empty | Cons of ’a * ’a stream

(* ... *)
end
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delay and expose

The most essential functions to working with streams are delay and expose ,
which mediate the relationship between streams and fronts.

delay : (unit -> ’a front) -> ’a stream
REQUIRES: true
ENSURES: delay f creates the stream associated with the thunk f.

expose : ’a stream -> ’a front
REQUIRES: true
ENSURES: expose S forces the stream S, revealing the resulting front. This
does not necessarily need to produce a value!
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delay and expose

We can implement them as so.

fun delay f = Stream f

fun expose (Stream f) = f ()

We will use these two functions as helpers when we write functions that operate on
streams.

Since our ’a stream type is abstract, we have to provide these helpers, as users
of the structure cannot apply the Stream constructor directly, or force the thunk. It
ends up that using the delay and expose functions will make it very explicit when
we are doing work and when we are suspending.

Brandon Wu Lazy Programming 25 July 2023 37 / 51



A Stream of Naturals

Let’s try to do the natural numbers again, but this time with streams.

We will usually construct streams via mutual recursion, which is functions which
are allowed to call each other. This is again achieved with the and keyword.

fun nats (i : int) : int stream = delay (fn () => nats ’ i)
and nats ’ (i : int) : int front = Cons (i, nats (i + 1))

Alternatively, we could have implemented it with a single function:
fun nats i = delay (fn () => Cons (i, nats (i + 1)))

but it’s generally cleaner to separate into two functions, one of which produces a
stream, and one of which produces a front. Remember, types guide structure.
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Constructing Arbitrary Streams

We can do tabulate again, too, but for streams!

fun tabulateHelp f i = delay (fn () => tabulateHelp ’ f i)
and tabulateHelp ’ f i = Cons (f i, tabulateHelp f (i + 1))

fun tabulate f = tabulateHelp f 0

Check your understanding Make sure you understand why this version of
tabulate is more lazy than lazyTabulate . What does tabulate f return,
versus lazyTabulate?
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Mapping Streams

Like most data structures, we can write a map function on streams.

map : (’a -> ’b) -> ’a stream -> ’b stream
REQUIRES: f is total
ENSURES: map f S evaluates to the same stream as S, but with f applied to
each element of the stream

map ’ : (’a -> ’b) -> ’a front -> ’b front
REQUIRES: f is total
ENSURES: map ’ f F evaluates to the same front as F, but with f applied to
each element of the front

Here, we again define two functions, one for streams and one for fronts. Since map
operates on a given stream, the corresponding map ’ also takes in a front.
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Mapping Streams

fun map f S = delay (fn () => map ’ f (expose S))
and map ’ f Nil = Nil

| map ’ f (Cons (x, s)) = Cons (f x, map f s)

In this case, our mutual recursive usage of these two functions reflects a difference
in intention between the two functions. When "deconstructing" a stream, the
function which produces a stream simply sets up the second function – the second
function is the only one which actually has license to look at the stream’s elements.
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A Lack of Maximal Laziness

The following implementation would fail to be maximally lazy, however.

fun map f s =
case expose s of

Nil => delay (fn () => Nil)
| Cons (x, s’) => delay (fn () => Cons (f x, map f s’))

The process of mapping this stream exposes the input stream, without any outside
prompting to force the resulting stream! We want to be able to map it in a way that
we never need to expose any elements, until we must.

In general, it’s only safe to execute operations on a stream so long as they are
locked behind a call to delay , so that it only occurs once the stream is exposed.
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A Lesson in Productivity

Recall that exposing a stream means to express intent to look at its elements, and
will cause the computation of the next element, if any.

This is dangerous, because that computation might do anything from raise an
exception, to loop forever, to take 2 months to run. Exposing a stream is a risky
endeavour!

Generally, we like to work with streams that have well-defined contents, such that
exposing will always eventually give us another element. We call those streams
productive.

Def A productive stream S is one such that Stream.expose S always terminates
with Empty or Cons (x, S’), where S’ is again productive.
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A Lesson in Productivity

Generally, we like working with productive streams. Thus, we need to be careful
when using functions like map, which could turn a productive stream into a
no-longer productive stream.
Productivity will also help us describe the specification of more stream functions.

append : ’a stream * ’a stream -> ’a stream
REQUIRES: S1 and S2 are productive
ENSURES: append (S1, S2) is productive

append ’ : ’a front * ’a stream -> ’a front
REQUIRES: S2 is productive and F is Empty or Cons of a productive stream
ENSURES: append ’ (F, S2) is productive
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A Pending Implementation

Now, we can implement our function, again employing the technique of two
different functions, one for generating streams and one for generating fronts.

fun append (S1, S2) =
delay (fn () => append ’ (expose S1, S2))

and append ’ (Empty , S2) = expose S2
| append ’ (Cons (x, S1), S2) = Cons (x, append (S1, S2))

Note that in the case where the input front is Empty , append ’ must expose the
second stream! This is so that the types match, since append ’ wants to return an
’a front .
This is fine, in terms of maximal laziness, though, as append ’ is a function
operating on a front, meaning that it already has "license to expose" the stream that
it is producing. Another way to think about it is that the only way to get to a call to
append ’ is to expose the output stream.
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Filtering Streams

One more for the road.

filter : (’a -> bool) -> ’a stream -> ’a stream
REQUIRES: true
ENSURES: filter p S is the stream of all the elements of S satisfying p

filter ’ : (’a -> bool) -> ’a front -> ’a front
REQUIRES: true
ENSURES: filter ’ p F is the front of all the elements of F satisfying p
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Filtering Streams

fun filter p S = delay (fn () => filter ’ p (expose S))
and filter ’ p Empty = Empty

| filter ’ p (Cons (x, S)) =
if p x then Cons (x, filter p S)
else expose (filter p S)

This is an interesting case, because filter might produce a non-productive
stream from a productive stream, even with a total function p!

Note a subtlety in the implementation, here, which is that filter ’ must expose the
rest of the stream, to make the types match!

Key filter might loop forever upon exposing the next element, if it has to keep
searching for an element which never satisfies the predicate
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5 - Primes (Bonus)



A Prime Example

Some people will tell you that the primes are infinite.7

As such, they make a prime candidate to study as an application of streams! We can
try to hold a stream which has all of the primes at once.

We can do so using an ancient technique called the Sieve of Eratosthenes, which
tries to find all prime numbers by marking all of the numbers which are not prime.

7Those people would be correct.
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A Prime Example Programmatic Thinking is Mathematical Thinking

The idea is that as soon as we see 2, and we know that it is prime, we remember
that fact and then disregard any number which is divisible by 2. We will then do that
with 3, 5, etc, every prime number that we see in the future.

It can be implemented as such:
fun dividedBy x y = y mod x = 0
fun sieve S = delay (fn () => sieve ’ (expose S))
and sieve ’ Empty = raise Fail "this shouldn ’t ever happen"

| sieve ’ (Cons (x, S)) =
Cons (x, sieve (filter (not o (dividedBy x)) S))

val natsFrom2 = tabulate (fn x => x + 2)
val primes = sieve natsFrom2
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Thank you!
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