


Lesson Plan

1 Recursion

2 Induction

3 Proving Correctness

4 More Language Features

5 Case Study: Fast Exponentiation

Brandon Wu Induction and Recursion 23 May 2023 2 /44



Last time

In the last lecture, we learned about some of the more complex types in SML, like
tuples and functions.

We learned about how to declare variables and functions. We learned that declaring
a variable binds it, which is different than assignment.

We also learned how we can mathematically prove things about SML code using a
notion of extensional equivalence.

Brandon Wu Induction and Recursion 23 May 2023 3 /44



1 - Recursion



Recursion

In the first lecture, we mentioned how we will be focusing on recursion in this class.

Def We call a function recursive if it calls itself. More generally, something which
refers to itself is recursive.
Ex. This sentence is recursive.

SML doesn’t have for loops, so recursion will be our preferred method for repeating
some computation. We will find that, in conjunction with purity and binding, this will
greatly help us reason about our code.

Brandon Wu Induction and Recursion 23 May 2023 5 /44



Recursion, Mathematically

While recursion is a concept which is usually taught in programming classes, it’s just
as much a mathematical concept.

The factorial function is usually specified as:

fact(n) =
{

1, if n = 0
n ∗ fact(n− 1), if n > 0

}
(1)

which references the factorial function in its own definition. In other words, it’s
recursive.

We see that the SML code for the factorial function closely resembles the
mathematical definition.

Recursive Problems, Recursive Solutions

Brandon Wu Induction and Recursion 23 May 2023 6 /44



The Recursive Formula

There is a simple four-step formula to writing any recursive function:

• Identify and write the base case,
• Identify the recursive case,
• Assume that the function already works on a "smaller" input,
• Write the recursive case under that assumption.

Def We say that the base case for a recursive function is the branch of the
function which does not recurse.

Brandon Wu Induction and Recursion 23 May 2023 7 /44



A pow Function

Let’s try to write out a different function using this formula.

pow : int * int -> int
REQUIRES: k >= 0
ENSURES: pow (n, k) evaluates to nk

We know that raising any number to the power of 0 will produce 1, so our base case
will simply be the case where the second value we receive is 0.

fun pow (n : int , 0 : int) : int = 1
| (* ... *)

Since our base case is casing upon the value of the exponent, this is a good
indication that the exponent is going to be the value that we recurse on. We call this
the variable of recurrence.

Brandon Wu Induction and Recursion 23 May 2023 8 /44



The pow Function: Recursive Case

What should we write for our recursive case? We want to be able to compute an
arbitrary pow(n, k), for non-zero k.

Thinking recursively, we want to be able to assume that our function already works
on a smaller input. Since our variable of recurrence is k, then we can assume that
pow (n, k - 1) already evaluates to the (k − 1)th power of n.

Given nk−1, we can recover nk by just multiplying by n, so we get:
fun pow (n : int , 0 : int) : int = 1

| pow (n, k) = n * pow (n, k - 1)

This is the magic of recursive thinking!

Brandon Wu Induction and Recursion 23 May 2023 9 /44



The Recursive Formula, Revisited

There is a simple four-step formula to writing any recursive function:
• Identify and write the base case,
• Identify the recursive case,
• Assume that the function already works on a "smaller" input,
• Write the recursive case under that assumption.

Def We say that the base case for a recursive function is the branch of the
function which does not recurse.

Note But wait, this formula looks similar to something we’ve already seen...
Let’s give the perspective a switch...

Brandon Wu Induction and Recursion 23 May 2023 10 / 44



Recursion, Unmasked

Brandon Wu Induction and Recursion 23 May 2023 11 / 44



The Recursive Formula, Unmasked

There is a simple four-step formula to proving any simple inductive theorem:

• Identify and write the base case,
• Identify the recursive case,
• Assume that the induction hypothesis holds,
• Prove the recursive case under that assumption.

Def We say that the base case for an inductive proof is the case of the proof
which does not require an inductive hypothesis. But wait, this formula looks similar
to something we’ve already seen...

Note Perfect.

Brandon Wu Induction and Recursion 23 May 2023 12 / 44



2 - Induction



Inductive Proof

Let’s take a brief excursion into mathematical induction.

Def The principle of mathematical induction (or simple induction) is a proof
technique for theorems on the natural numbers. In particular, it has the logical form:

P (0) ∧ (∀n.P (n) =⇒ P (n+ 1)) =⇒ ∀n.P (n)

In other words: "if you can prove P (0), and that any step follows from the previous,
then the statement is true for all numbers".

Brandon Wu Induction and Recursion 23 May 2023 14 /44



The Inductive Formula

There is a simple four-step formula to proving any simple inductive theorem:

• Identify and write the base case,
• Identify the recursive case,
• Assume that the induction hypothesis holds,
• Prove the recursive case under that assumption.

Def We say that the base case for an inductive proof is the case(s) of the proof
which do not require an inductive hypothesis.

Brandon Wu Induction and Recursion 23 May 2023 15 / 44



An Example Inductive Proof

Let Sn be the sum of the first n odd natural numbers.
Thm. Prove that Sn is n2

We proceed by mathematical induction on n.
BC n = 1 Then, 1 = 12.

IH Let k be arbitrary and fixed. Assume that Sk = k2.
IS Then, we want to show that Sk+1 = (k + 1)2.
We know the k + 1th odd natural number is 2k + 1, so:

Sk+1 = Sk + 2k + 1

= k2 + 2k + 1

= (k + 1)2

Therefore, by the principle of mathematical induction, the theorem holds for all natural
numbers n.

Brandon Wu Induction and Recursion 23 May 2023 16 /44



Seeing Double

We see that recursion and induction are really just two sides of the same coin.

Recursion is about using the answers to sub-problems to solve a bigger one.

Induction is about using the inductive assumption to prove the n+ 1th case.

The key thing to remember is the recursive leap of faith, which entails assuming
that the function already works on a smaller input.

Programmatic Thinking is Mathematical Thinking

Brandon Wu Induction and Recursion 23 May 2023 17 / 44



Writing versus Verifying

We have seen now that induction can be used as a tool which can help us to write
recursive functions.

But not all recursive functions are obvious in their logic! We said earlier that we are
not just interested in writing code, we are interested in writing correct code.

The best way to be certain of a function’s correctness is to prove that it is correct.
We will see now that induction helps us with recursion in another way, because we
can prove that SML functions are correct using induction.

Brandon Wu Induction and Recursion 23 May 2023 18 / 44



3 - Proving Correctness



Recursive Correctness

Let’s look at the pow function we just wrote.

fun pow (n : int , 0 : int) : int = 1
| pow (n, k) = n * pow (n, k - 1)

Let’s try to write an inductive proof of correctness.

When we do induction, we usually want a quantity to induct on, however. What
should we pick for this function?

In this case, the variable of recurrence is usually a prime candidate for our
induction!

Brandon Wu Induction and Recursion 23 May 2023 20 /44



Proving pow Correct

Thm. Prove that pow (n, k) ↪→ nk, for all k >= 0

We proceed by mathematical induction on k.
BC k = 0

pow(n, 0) =⇒ 1 (clause 1 of pow)

IH Assume that pow (n, k) ↪→ nk, for some k
IS Then, we want to show that pow (n, k + 1) ↪→ nk+1

pow (n, k + 1) =⇒ n * pow (n, k) (clause 2 of pow)
=⇒ n * nk (induction hypothesis)
=⇒ nk+1 (math)

Brandon Wu Induction and Recursion 23 May 2023 21 / 44



Proving a Function Correct

We see that in an inductive proof on a recursive function, the isomorphism between
recursion and induction is made even more clear.

Program Proof

Base case (pow (n, 0)) Base case (n0)

Recursive call (pow (n, k)) Inductive hypothesis (nk)

Variable of recurrence (k) Induction variable (k)

Programmatic Thinking is Mathematical Thinking

Brandon Wu Induction and Recursion 23 May 2023 22 /44



4 - More Language Features



Case Expressions

An alternative to matching on an input in a function clause is to use a case
expression.

case <expr > of
at1 > => <expr1 >

| at2 > => <expr2 >
...
| atn > => <exprn >

Note The first "arm" of a case expression has no bar!

Note case expressions follow similar typing rules as function clauses, where each
case’s expression must share the same type.

Brandon Wu Induction and Recursion 23 May 2023 24 /44



Case Expressions

So for instance, we could rewrite the fact function as:
fun fact (n : int) : int =

case n of
0 => 1

| _ => n * fact (n - 1)

Note We could have written this with n instead of the wildcard pattern, which
would have shadowed the original n with a new binding with exactly the same
value.
It’s still an expression, though, so it’s totally OK to write something like

(case 2 of
2 => 3

| _ => 5) + 1

Brandon Wu Induction and Recursion 23 May 2023 25 /44



Lists

To write more interesting functions, we will also introduce lists.

Def For any type t, there is a type t list, which describes an ordered collection
of 0 or more elements of type t.

Here are some examples of lists:
• [1, 2, 3] : int list
• ["hi", "there"] : string list
• [] : int list
• [] : bool list
• [[1, 2]] : int list list

What if we want to add to an existing list, though? We can also construct lists out of
other lists, using a constructor!

Brandon Wu Induction and Recursion 23 May 2023 26 /44



List Constructors

A list is characterized by two constructors, which are used to construct values of
some list type. These constructors are

• []1, which is the empty list of type t list
• :: (pronounced "cons"), an infix operator such that x :: xs : t list if

x : t and xs : t list.

While the bracket notation is simple, it’s actually just syntactic sugar! The list
[1, 2, 3] is really just 1::2::3::[]

Note The :: operator is right-associative, meaning that 1::2::3::[] is implicitly
understood to be 1::(2::(3::[]))

Types Guide Structure

1If you’re viewing this presentation online, after the lecture, it’s important to me that you know this
is pronounced "nil". Hard to convey digitally.

Brandon Wu Induction and Recursion 23 May 2023 27 /44



List Constructors

Constructors are patterns too!

This means that we can case upon a list to figure out what kind of variant it is. For
instance, we can write a function to check whether a list is empty as:

fun isEmpty (L : int list) : bool =
case L of

[] => true
| x::xs => false

We might say that these constructors are all that characterize a list. A list must be
either empty ([]) or have a first element, and the rest of the list (x::xs). Pattern
matching just lets us handle either case.

Brandon Wu Induction and Recursion 23 May 2023 28 /44



List Constructors

Let’s apply the recursion formula on a simple length function on lists.

The base case must be the empty list [], in which case we just return 0.

In the recursive case x::xs, we also assume that length works on a smaller input.
In this case, xs happens to be exactly a smaller input than the entire list x::xs, so
we assume length xs works, and we get:

fun length ([] : int list) : int = 0
| length (x::xs) = 1 + length xs

Brandon Wu Induction and Recursion 23 May 2023 29 /44



5 - Case Study: Fast Exponentiation



Fast Exponentiation

Suppose that we are interested in solving a slightly more involved problem.

The pow function we just implemented is fine, but it’s not necessarily as fast as it
could be! From eyeing the function, we can see that it would take us k many
multiplications to compute the kth power of n. This is more than it needs to be,
because of a nice fact that we can take advantage of:

If k is odd, then
nk = n ∗

(
n⌊k/2⌋

)2

If k is even, then
nk =

(
nk/2

)2

Can we turn this mathematical definition into a program?

Brandon Wu Induction and Recursion 23 May 2023 31 / 44



The fast_pow Function

Let’s try it out!
fun fast_pow (n : int , 0 : int) : int = 1

| fast_pow (n, k) =
if k mod 2 = 0 then

fast_pow (n, k div 2) * fast_pow (n, k div 2)
else

n * fast_pow (n, k - 1)

How’s this look?2

2I actually adjusted the definition slightly from the mathematical definition, because it makes the
proof easier. It can be done either way, though.

Brandon Wu Induction and Recursion 23 May 2023 32 /44



A "Faster" Function

There’s a problem with this function, however. It’s not actually necessarily saving us
that many multiplications, because we make two recursive calls!

We wanted to save on effort by reusing our answers from the recursive call, but we
see here that we are just recomputing each time!

fast_pow is a pure function, meaning that we should be able to do some
extensionally equivalent refactoring, using the power of referential transparency...

To do this, however, we need to be able to bind a variable within an expression.
How shall we do this?

Brandon Wu Induction and Recursion 23 May 2023 33 /44



Let Expressions

The syntax for binding a variable for use within another expression is as follows:

let
<declarations >

in
<expr >

end

where the declarations are much the same as the val and fun declarations that we saw
earlier. This means there can be multiple of them!
Note let expressions are expressions in their own right, so it is valid to write

(let
val x = 2

in
x + x

end) + 3

Brandon Wu Induction and Recursion 23 May 2023 34 /44



Lexical Scoping

SML is a lexically scoped language, which means that the scope in which variable
bindings are visible depends on its context in the text of the program.

This means, for instance, that anything declared within a let expression is only
potentially visible within the expression included with it. This means, for instance,
that this is invalid code:

(* INVALID CODE! What is ‘y‘? *)
val x =

(let
val y = 3

in
4

end) + y

Brandon Wu Induction and Recursion 23 May 2023 35 /44



Back to fast_pow

So let’s modify our original fast_pow :
fun fast_pow (n : int , 0 : int) : int = 1

| fast_pow (n, k) =
if k mod 2 = 0 then

let
val half_ans = fast_pow (n, k div 2)

in
half_ans * half_ans

end
else

n * fast_pow (n, k - 1)

Now, we only ever have at maximum one recursive call to fast_pow !

How do we know that behavior is preserved, however? We want to be able to prove
this.

Brandon Wu Induction and Recursion 23 May 2023 36 /44



Inducting on a Strange Call

However, we see that the recursive call is to fast_pow (n, k div 2).

This is not as straightforward as what we usually saw, with the recursive call being
on one less than the current value.

If the recursive call corresponds to our inductive hypothesis, then will a change to
our recursive call change what our inductive hypothesis should be?

Note Yes.

Since we need to know something about k/2 rather than k − 1, we will proceed by
strong induction instead of simple induction.

Brandon Wu Induction and Recursion 23 May 2023 37 /44



Strong Induction

Def Strong induction is a variant of inductive proof where instead of assuming
the inductive hypothesis for just n− 1, the hypothesis is assumed for all numbers
between 0 and n.

You can think of it as, if we have gone to all the trouble of proving our theorem
incrementally by adding larger and larger numbers to our collection, we should still
be able to make use of all of the intermediary theorems we proved (i.e.
P (0), P (1), ..., P (n)), not just the last one.

Now, let’s do the proof.

Brandon Wu Induction and Recursion 23 May 2023 38 /44



fast_pow Is pow

Thm. Prove that fast_pow ∼= pow

We proceed by strong induction on k.

BC k = 0

fast_pow (n, 0) ∼= 1 (clause 1 of fast_pow)
∼= pow (n, 0) (clause 1 of pow)

IH Assume fast_pow (n, k) ∼= pow (n, i), for all 0 <= i < k, for some k

IS Then, we want to show that fast_pow (n, k) ∼= pow (n, k) But what do
we do in this case?

Brandon Wu Induction and Recursion 23 May 2023 39 /44



Proving through Cases

Here, we have a dilemma, because we have two cases, the case where k is even,
and the case where k is odd.

The way we deal with this in a proof is that we must prove that the theorem holds
no matter which case we are in.

So we must prove the theorem for both cases. To do this, we will make use of a
lemma:

Lemma 1 When k mod 2 = 0, then

pow (n, k div 2) * pow (n, k div 2) ∼= pow (n, k)

Brandon Wu Induction and Recursion 23 May 2023 40 /44



fast_pow Is pow: Inductive Step

IS Then, we want to show that fast_pow (n, k) ∼= pow (n, k)

Case 1: k mod 2 = 0

fast_pow (n, k) ∼= half_ans * half_ans (clause 2 of fast_pow)
∼= fast_pow (n, k div 2) * fast_pow (n, k div 2)

(def of half_ans)
∼= pow (n, k div 2) * pow (n, k div 2)

(induction hypothesis)
∼= pow (n, k) (lemma 1, case assumption)

Brandon Wu Induction and Recursion 23 May 2023 41 / 44



fast_pow Is pow: Inductive Step

Case 2: k mod 2 <> 0

fast_pow (n, k) ∼= n * fast_pow (n, k - 1) (clause 2 of fast_pow)
∼= n * pow (n, k - 1) (induction hypothesis)
∼= pow (n, k) (clause 2 of pow)

Now, we have finished proving our theorem!

Brandon Wu Induction and Recursion 23 May 2023 42 /44



Programs and Proofs

Program Proof

Base case (pow (n, 0)) Base case (n0)

Recursive call (pow (n, k)) Inductive hypothesis (nk)

Variable of recurrence (k) Induction variable (k)

Simple recursive call (k - 1) Simple induction

Complex recursive call (k div 2) Strong induction

Branching behavior (if) Proof casing

Programmatic Thinking is Mathematical Thinking

Brandon Wu Induction and Recursion 23 May 2023 43 /44



Thank you!


	Recursion
	Induction
	Proving Correctness
	More Language Features
	Case Study: Fast Exponentiation

