

Lesson Plan

1 Mutability

2 Reference Cells

3 Using Refs

4 Aliasing

5 Applications of Mutability (Bonus)

Brandon Wu Imperative Programming 27 July 2023 2 / 65

1 - Mutability

On Safety

So far in this course, we’ve spent a great deal of time emphasizing the importance
of safety in programming.

We want to avoid footguns like mutability, which quickly leads us into needing to
reason profusely about the entire history of our program, as well as introducing the
possibility of messing ourselves up by causing code which worked previously to no
longer work.

Our solution was to simply not to play, by only dealing with pure code which
eschewed side effects for predictable, safe behavior.

Brandon Wu Imperative Programming 27 July 2023 4 / 65

On Effects

We’ve tried our best, but effects are kind of hard to get away from!

For instance, we saw in an earlier lecture that the presence of exceptions makes
addition no longer commutative, in general, for arbitrary expressions. We would like
to be able to say that independent computations can be freely reordered, but we
can’t reorder these two declarations of x and y:

fun foo () =
let

val x = loop ()
val y = raise Div

in
()

end

Brandon Wu Imperative Programming 27 July 2023 5 / 65

Printing in SML

Relatedly, our notion of extensional equivalence is not necessarily preserved, either.

We want to say that extensionally equivalent values can be freely substituted for
each other wherever we see them. Unfortunately, there also exists the print
function, which has type string -> unit, which prints a string to the outside
world.

We can’t necessarily say that print "hi" and () are extensionally equivalent,
because replacing all instances of () will definitely make a program with differing
extensional behavior. So we need to update our definition of extensional
equivalence, in the presence of side effects.

Brandon Wu Imperative Programming 27 July 2023 6 / 65

On Reality

Life is cruel. Unfortunately, we live in the physical world.

We’ve shyed away from it thus far, but at some point we have to be able to read
from files, which is a side effect of its own. At some point, we need to be able to
interface with the real world. We can’t get away from reality forever.

So what can we do, while maintaining our ability to generally write safe code, and
avoid the footguns of the real world?

Brandon Wu Imperative Programming 27 July 2023 7 / 65

Serving Purity

The key term here will be that we want to avoid footguns.

Like many other concepts in programming, immutability and purity are concepts
which serve our purposes – we do not serve theirs. That means that we do not need
to bend over backwards to achieve immutability and purity, if the alternative is
genuinely more useful in a particular circumstance.1

That being said, we still don’t want to use mutable code all over the place, but we
want to simply offer the option to. The key behind immutability is not to forbid
mutability, but to make mutability opt-in.

1Worth noting that there are programming languages which do achieve complete purity, like
Haskell, and can still do things like interface with the real world, paradoxically. But it’s kind of complex
to understand how it does so.

Brandon Wu Imperative Programming 27 July 2023 8 / 65

Opting In

We’ve seen this in several different contexts this semester. For instance, consider
the phenomenon of null pointers, which are when values in other programming
languages can always possibly be some unsafe NULL value.

This is commonly known as Tony Hoare’s "billion-dollar mistake"2

Our solution to this problem has been to make optional values intentional, by
requiring them to be explicitly used when some NONE case is necessary. In other
words, optional values are opt-in, in that they only show up when they are chosen
to.

We are going to take a similar approach with mutability.

2His words, not mine.
Brandon Wu Imperative Programming 27 July 2023 9 / 65

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

2 - Reference Cells

A Type for Mutability

Similarly to how the type t option is the type of values of type t, plus the
possibility of not having such a value at all, we are going to have a brand new type
which denotes mutable storage of values of a certain type.

Def The type t ref, for any type t, is the type of mutable references to values of
type t.

In other words, the type t ref is the type of boxes, which contain a single value of
type t.

v

The key thing is that the contents of the box are allowed to change, as the program
evolves!

Brandon Wu Imperative Programming 27 July 2023 11 / 65

Opting Out Types Guide Structure

For anyone familiar with imperative programming, this is just a pointer to some
mutable state. What’s the difference?

The key innovation here is that mutability is opt-in, since we don’t need to use ref
types unless we want to. In other words, we now have a type-level distinction
between immutability and mutability. If we have a bug with some mutability going
on in our code, all we need to do is look for the explicit places where refs are used,
rather than literally every assignment ever, as in an imperative language.

This is just another example of how types will guide the structure of our programs.

Brandon Wu Imperative Programming 27 July 2023 12 / 65

Mutable Primitives

There are a few primitives that we will use to manipulate values of ref type. These
are the ref, !, and := operators.

val ref : ’a -> a ref
val ! : ’a ref -> ’a
val := : ’a ref * ’a -> unit

These primitives are used for creation, modification, and access for ref boxes.

Brandon Wu Imperative Programming 27 July 2023 13 / 65

ref Creation

The ref function takes in a value and puts it into a mutable box.

ref v ↪→ v

Key Fact The value denoted by ref v is the box itself, not the contents of the box!

In terms of what SML is doing, the act of calling the ref function allocates a single
box, capable of storing a single value of type t, for some type t.

Note A ref box can never be empty! Because it is given an initial value to store
inside of it, if the ref function is called at all, it is initially full, and there is no way to
remove what’s inside. No "null".

Brandon Wu Imperative Programming 27 July 2023 14 / 65

ref Creation

It’s also worth noting that ref creation is something which occurs once per call to
ref.

Each box created by a different call to ref is unique, and does not share the same
space. This means that if you want storage that is separate from pre-existing refs,
you should call ref again, rather than reuse existing ones.

So for instance, for the following code:
val r1 = ref 1
val r2 = ref "5"
val r3 = ref 0

Brandon Wu Imperative Programming 27 July 2023 15 / 65

One ref, One Box

val r1 = ref 1
val r2 = ref "5"
val r3 = ref 0

THE STORE

Brandon Wu Imperative Programming 27 July 2023 16 / 65

One ref, One Box

val r1 = ref 1
val r2 = ref "5"
val r3 = ref 0

THE STORE

1 r1

Brandon Wu Imperative Programming 27 July 2023 17 / 65

One ref, One Box

val r1 = ref 1
val r2 = ref "5"
val r3 = ref 0

THE STORE

1 r1

"5" r2

Brandon Wu Imperative Programming 27 July 2023 18 / 65

One ref, One Box

val r1 = ref 1
val r2 = ref "5"
val r3 = ref 0

THE STORE

1 r1

"5" r2

0 r3

Brandon Wu Imperative Programming 27 July 2023 19 / 65

ref Modification

What if we want to change the contents of the box, though? That’s where the :=
operator3 comes in, which is an infix operator of type ’a ref * ’a -> unit .

For instance, take the following code, in the context of the previous three boxes:
val () = v1 := 1
val () = v2 := "1"

Note how the := operator returns a (), because it is strictly used for its side
effects, and computes no meaningful values.

3Which can be pronounced "walrus", "assignment", or "colon equals".
Brandon Wu Imperative Programming 27 July 2023 20 / 65

Modifying refs

val () = v1 := 2
val () = v2 := "1"

THE STORE

1 r1

"5" r2

0 r3

Brandon Wu Imperative Programming 27 July 2023 21 / 65

Modifying refs

val () = v1 := 2
val () = v2 := "1"

THE STORE

2 r1

"5" r2

0 r3

Brandon Wu Imperative Programming 27 July 2023 22 / 65

Modifying refs

val () = v1 := 2
val () = v2 := "1"

THE STORE

2 r1

"1" r2

0 r3

Brandon Wu Imperative Programming 27 July 2023 23 / 65

Typed Boxes

When we have boxes, it seems like we should be able to do anything!

However, if our code had contained the following line, then our code would never
have run, because it would not have type-checked:

val () = v2 := 1

This is because v2 is of type string ref, and := : ’a ref * ’a -> unit, so
it doesn’t type-check!

In principle, this is because when we make a box, it is only able to store values of a
certain type. So we don’t have complete freedom, here.

Brandon Wu Imperative Programming 27 July 2023 24 / 65

ref Access

Finally, we have discussed how to make boxes, and how to put stuff into boxes.
Now we need to discuss how to take things out.

This is achieved via the ! operator, pronounced as the "bang" operator, of type
’a ref -> ’a, which simply returns whatever value is currently in the box.

So in the current example:

!v1 +
2

v1

↪→ 2

We simply unpack the contents of the box v1, which is 2.

Brandon Wu Imperative Programming 27 July 2023 25 / 65

ref Access in Pattern Matching

Note that we can also do this ! access by pattern matching.

For instance, for the refs v1 : int ref and v2 : string ref that we have
been working with, we could write:

case (v1, v2) of
(ref 2, ref "1") => true

| _ => false

which would successfully return true . We might say that this kind of pattern
matching includes an implicit deference, because we access the contents of each
ref without needing to call ! explicitly.

Note that this works because ref is not just a function of type ’a -> ’a ref, it is
also a constructor!

Brandon Wu Imperative Programming 27 July 2023 26 / 65

Effects with Bindings

So far, we’ve been using val bindings, which don’t actually bind anything
interesting, but merely serve to evaluate some expression for side-effecting
purposes.

This might look something like this, for instance:
let

val () = r := 150
in

e
end

if we wanted to set some ref to the value 150, prior to evaluating some expression
e.

This is a lot to type out, though! Luckily, there’s a shorthand.

Brandon Wu Imperative Programming 27 July 2023 27 / 65

The Sequencing Operator

We can use the ;, which is the sequencing operator, to evaluate some expressions
in a sequence, while disregarding their value.

So for instance, for the previous example, we could instead write out the expression
(r := 150; e). This evaluates both expressions from left-to-right to values, but
only returns the value of the last entry. This would be extensionally equivalent to
the previous expression.

We can also nest these arbitrarily deep. So we could write
(r := 1; r := 5; r:= 0; 150)4 for the expression which cannot make up its
mind and constantly reassigns the ref r, and then eventually reduces to the value
150.

4Generally, you need parentheses around the whole thing, whenever you have a sequence of
expressions.

Brandon Wu Imperative Programming 27 July 2023 28 / 65

3 - Using Refs

Writing Imperative Code

Now that we know the three fundamental operators for working with ref cells, we
can start looking at some examples of us actually using refs.
Now we can define some functions that we previously also could, but now we can
do it with refs. Let’s go back to our roots. Here’s fact .5

val store = ref 1

fun fact 0 = !store
| fact n =

(store := n * (!store);
fact (n - 1)

)

Seems legit, right?
5Disclaimer that this is, of course, strictly educational, and in practice a terrible idea. You should

never introduce mutability for the sake of mutability.
Brandon Wu Imperative Programming 27 July 2023 30 / 65

Debugging Imperative Code

At least, it would be, if we didn’t end up in the entirely predictable circumstance where
writing imperative code ended up causing a bug.
This fact implementation is wrong. Consider what happens when you call fact 2.

fun fact 0 = !store
| fact n =

(store := n * (!store);
fact (n - 1)

)

THE STORE

1 store

Brandon Wu Imperative Programming 27 July 2023 31 / 65

Debugging Imperative Code

First, we enter the call to fact 2.

fun fact 0 = !store
| fact n =

(store := n * (!store);
fact (n - 1)

)

THE STORE

1 store

Brandon Wu Imperative Programming 27 July 2023 32 / 65

Debugging Imperative Code

The first thing to happen is that we assign store to the contents of store , multiplied
by 2, which is our current value of n.

fun fact 0 = !store
| fact n =

(store := n * (!store);
fact (n - 1)

)

THE STORE

2 store

Brandon Wu Imperative Programming 27 July 2023 33 / 65

Debugging Imperative Code

The next thing we do is that we recurse on n - 1, which in this case is 1.
We won’t step through that call explicitly, but suffice to say that it will multiply the
store by 1, keeping it the same, and then eventually return the contents of the store,
which is 2.

fun fact 0 = !store
| fact n =

(store := n * (!store);
fact (n - 1)

)

THE STORE

2 store

Brandon Wu Imperative Programming 27 July 2023 34 / 65

Debugging Imperative Code

But what happens if we immediately then execute fact 2, again?

Then, we enter the function again...

fun fact 0 = !store
| fact n =

(store := n * (!store);
fact (n - 1)

)

THE STORE

2 store

Brandon Wu Imperative Programming 27 July 2023 35 / 65

Debugging Imperative Code

... and multiply what is in the store by n, which is 2

fun fact 0 = !store
| fact n =

(store := n * (!store);
fact (n - 1)

)

THE STORE

4 store

Brandon Wu Imperative Programming 27 July 2023 36 / 65

Debugging Imperative Code

Then, we recurse finally on fact 1, which we know will keep the store the same and
return the contents of the store, which is 4.
So fact 2 ↪→ 4.
Uh oh.

fun fact 0 = !store
| fact n =

(store := n * (!store);
fact (n - 1)

)

THE STORE

4 store

Brandon Wu Imperative Programming 27 July 2023 37 / 65

One ref to Rue Them All

Our problem was that our ref was too long lasting!

We used the same ref, which was never reset, at any point.

In fact, every call to fact uses that same ref, because we only called ref once, and
at the top level, independent of any call to the function fact! This is sure to be a
recipe for disaster!

A better way to do it would be not to share this memory between different function
calls. We might prefer to have each call to fact spawn its own, private ref cell, for
use in its calculations.

Brandon Wu Imperative Programming 27 July 2023 38 / 65

fact , refactored

Let’s rewrite our imperative fact with that idea in mind.

fun fact n =
let

val store = ref 1
fun fact ’ 0 = !store

| fact ’ n =
(store := n * (!store);

fact ’ (n - 1)
)

in
fact ’ n

end

Brandon Wu Imperative Programming 27 July 2023 39 / 65

Observational Purity Programmatic Thinking is Mathematical Thinking

Now, our fact function works, because upon entering the function, a ref is
allocated. Because it’s gated by the function, it’s guaranteed to be new on each
invocation of the function, and thus it is safe to be used by the helper function
fact ’.

In the background, once the fact function finishes its run, the ref cell of store will
be deallocated, and thus not waste any memory.

Def We say that functions like fact are observationally pure, in that they appear
to an outside user to be pure, even though they use side effects such as mutability
internally.

The key reason why observational purity is OK is because it is impossible to tell
from the outside that the function is not pure! We also call such effects used in an
observationally pure way a benign effect.

Brandon Wu Imperative Programming 27 July 2023 40 / 65

4 - Aliasing

refs as Values

Because of the fact that ref cells are values like any other, we can pass them
around and bind them to new variables, like any other.

We have to be especially careful when we do something like this, however, so that
we get the correct mental picture for what’s happening!

For instance, take the following code:
val r1 : int ref = ref 0
val r2 : int ref = r1
val r3 : int ref ref = ref r1
val r1 : int ref = ref 1
val () = r2 := 3

What’s going on here?

Brandon Wu Imperative Programming 27 July 2023 42 / 65

ref Chasing

We start off with the empty store, as usual.

val r1 : int ref = ref 0
val r2 : int ref = r1
val r3 : int ref ref = ref r1
val r1 : int ref = ref 1
val () = r2 := 3

THE STORE

Brandon Wu Imperative Programming 27 July 2023 43 / 65

ref Chasing

At a call to ref, we allocate a distinct ref cell for r1.

val r1 : int ref = ref 0
val r2 : int ref = r1
val r3 : int ref ref = ref r1
val r1 : int ref = ref 1
val () = r2 := 3

THE STORE

0 r1

Brandon Wu Imperative Programming 27 July 2023 44 / 65

ref Chasing

When we bind the value of r1 to r2, this means that r2 now refers to the same box
as r1.

val r1 : int ref = ref 0
val r2 : int ref = r1
val r3 : int ref ref = ref r1
val r1 : int ref = ref 1
val () = r2 := 3

THE STORE

0 r1, r2

Brandon Wu Imperative Programming 27 July 2023 45 / 65

ref Chasing

We then allocate a box which itself points to the box of r1, which we denote via a
box with an arrow directed at the box of r1.

val r1 : int ref = ref 0
val r2 : int ref = r1
val r3 : int ref ref = ref r1
val r1 : int ref = ref 1
val () = r2 := 3

THE STORE

0 r1, r2

r3

Brandon Wu Imperative Programming 27 July 2023 46 / 65

ref Chasing

We then re-bind r1 to a different ref cell. This affects neither r2, which has the
same value, nor what r3 is pointing at!

val r1 : int ref = ref 0
val r2 : int ref = r1
val r3 : int ref ref = ref r1
val r1 : int ref = ref 1
val () = r2 := 3

THE STORE

0 r2

r3

1 r1

Brandon Wu Imperative Programming 27 July 2023 47 / 65

ref Chasing

We can then update the contents of r2 ’s box to 3, which is independent of r1 ’s new
box, but affects r3 indirectly.

val r1 : int ref = ref 0
val r2 : int ref = r1
val r3 : int ref ref = ref r1
val r1 : int ref = ref 1
val () = r2 := 3

THE STORE

3 r2

r3

1 r1

Brandon Wu Imperative Programming 27 July 2023 48 / 65

Pointers, Pointers

Such is the pointer-chasing logic common to imperative programming.

The diagram is made easier to understand if you cognize the fact that, since there
are three calls to ref, there must be three ref cells allocated over the course of the
trace.

In addition, it is impossible to change the contents of a box without a call to :=! So
be on the lookout for cheap ways to verify your thinking, when thinking about refs
and pointers.

Remember, there’s nothing special about boxes. They can be bound to other
variables at will.

Note One might say, boxes are values.6

6And pointers are boxes. Let transitivity take it from here.
Brandon Wu Imperative Programming 27 July 2023 49 / 65

refs within refs

As we saw in the previous example, we can have refs which point to other refs.

In conjunction with recursive types, this lets us define arbitrary powerful imperative
structures. For instance, we could define a type for imperative linked lists:

(* I used the term "llist" last lecture , unfortunately *)
datatype ’a mut_list = Nil | Cons of ’a * ’a mut_list ref

Notably, such a type can have cycles, which is not something you can have with
ordinary recursive datatypes! For instance:

val r : int mut_list ref = ref Nil
val l = Cons (1, r)
val () = r := l

Brandon Wu Imperative Programming 27 July 2023 50 / 65

A Circular Picture

Let’s explore exactly what’s going on here. We start off with the empty store.

val r : int mut_list ref = ref Nil
val l = Cons (1, r)
val () = r := l

THE STORE

Brandon Wu Imperative Programming 27 July 2023 51 / 65

A Circular Picture

Then, we allocate a single reference cell containing the empty mut_list .

val r : int mut_list ref = ref Nil
val l = Cons (1, r)
val () = r := l

THE STORE

Nil r

Brandon Wu Imperative Programming 27 July 2023 52 / 65

A Circular Picture

We then bind the value of Cons (1, r) to l.

val r : int mut_list ref = ref Nil
val l = Cons (1, r)
val () = r := l

THE STORE

Cons (1, Nil

r

) l

Brandon Wu Imperative Programming 27 July 2023 53 / 65

A Circular Picture

Here’s where the "contains" analogy becomes imperfect. But basically, we cause r
to now point to the Cons node, which is perfectly legal.

val r : int mut_list ref = ref Nil
val l = Cons (1, r)
val () = r := l

THE STORE

Cons (1,

r

) l

Brandon Wu Imperative Programming 27 July 2023 54 / 65

5 - Applications of Mutability (Bonus)

Mutability and Parallelism

Mutability is generally problematic, but it doesn’t need to be avoided at all costs.

One thing to realize about mutability is that it inherently causes problems with
parallelism. One nice property we talked about on the first day was the ability to
reason about components of functional programs independently – this is because
those components must always evaluate the same, in the absence of effects.

Mutability can be safe in a deterministic environment, but it becomes much more
difficult to control when running a parallel program.

Sequential Parallel
Immutable safe safe

Mutable harder, but possible no man’s land

Brandon Wu Imperative Programming 27 July 2023 56 / 65

Mutability in Practice

There are some common techniques that can be used in a functional setting with
ref cells, however. These are generally more innocent, and have less to do with
persistent usage of mutable state, as more occasional usages of mutability as a
labor-saving device.

Remember, purity is a trap. We don’t serve immutability – immutability and
mutability serve us.

Brandon Wu Imperative Programming 27 July 2023 57 / 65

Mutability Technique: Fresh IDs

We can use ref cells to generate fresh integers (or temps), that are guaranteed to
be unique across a single program’s lifetime.
Use Cases Unique identifiers for each node in a graph, each person in a database,
each variable in a program, each transaction in a system.
We do this by simply using an int ref which we increment every time we get a
new ID.

val id_store = ref 0

fun fresh () =
(id_store := 1 + (! id_store);

!id_store
)

Brandon Wu Imperative Programming 27 July 2023 58 / 65

Mutability Technique: Fresh IDs

These IDs are known to be ints, though, so it’s possible we might accidentally do
arithmetic on them and get a different ID when we didn’t mean to.
We can use this technique in conjunction with opaque ascription to prevent that!

structure UNIQUE_ID =
sig

(* an abstract type of fresh identifiers *)
type t

val fresh : unit -> t

(* need an equality function , or the type is useless *)
val eq : t * t -> bool

end

Brandon Wu Imperative Programming 27 July 2023 59 / 65

Mutability Technique: Fresh IDs

Then, we just opaquely ascribe to the above signature to be able to make sure
users can only construct values of type UniqueId.t through the structure.

structure UniqueId :> UNIQUE_ID =
struct

(* internally an ‘int ‘, but users don ’t know that! *)
type t = int

val id_store = ref 0

fun fresh () =
(id_store := 1 + (! id_store);

!id_store
)

val eq = (op=)
end

Brandon Wu Imperative Programming 27 July 2023 60 / 65

Mutability Technique: Hooks

Suppose that you want to be able to dynamically load a given function, but you
don’t know what it is, necessarily, and you also can’t write the function right now.

There’s lots of reasons why you might want to be able to use a function, but you
can’t write it in the file you need it in. This could be due to compilation
dependencies, types you need being defined elsewhere, or just general program
logic living somewhere else.

You can make your dependencies run backwards by providing a ref cell that will
eventually contain the function you want, and then backpatching it at a later point,
filling in the cell before you use it.

Brandon Wu Imperative Programming 27 July 2023 61 / 65

Mutability Technique: Hooks

Def A hook is a ref of type t option ref, where t is usually a function type. It
starts off as NONE, and then at a later point is filled in to be SOME v, downstream.

val function_i_need_but_dont_have_hook :
(int -> int) ref = ref NONE

Then, several files downstream, we might write:
fun f x = (* ... *)

val _ = function_i_need_but_dont_have_hook := SOME f

This fills in the hook, usually before we even get the chance to use it, so we cover
our use cases.
This is also a useful way to make a piece of software’s behavior easily changeable
via an outside consumer, by having users have the option to set the hook.

Brandon Wu Imperative Programming 27 July 2023 62 / 65

Mutability Technique: Global Settings

Another classic technique is to have a ref which mediates some setting which
governs the program’s entire runtime.

This is better than explicitly passing that value down through every place where it
needs to be used, which would cause an immense amount of bloat in the program!

fun initialize_api is_verbose () =
let

val () = if is_verbose then
print "Initializing API ...\n"

else ()
in

(* ... *)
end

Brandon Wu Imperative Programming 27 July 2023 63 / 65

Mutability Technique: Global Settings

Here, we kill the explicit argument is_verbose , which would presumably need to
be passed through approximately fifty billion functions, and instead reference a
bool ref called is_verbose , which is set someplace else.

fun initialize_api () =
let

val () = if !is_verbose then
print "Initializing API ...\n"

else ()
in

(* ... *)
end

This is safer to do, because we generally only will set this property once per
invocation of a program.

Brandon Wu Imperative Programming 27 July 2023 64 / 65

Thank you!

	Mutability
	Reference Cells
	Using Refs
	Aliasing
	Applications of Mutability (Bonus)

