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Last time

Last time, we learned about the concept of parametric polymorphism.

We saw how polymorphic types could be parameterized by type variables, which
allowed values of polymorphic type to be used in generic ways, by instantiating
them at different types at each use site.

We also saw how we could define our own polymorphic datatypes, and rederived
the true definition of option and list from it.

We then experimented with polymorphic sorting, where we could create a sorting
function on lists which operated generically in the type of the list’s elements, by
providing a comparison function as another input to the sorting function.
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1 - Higher-Order Functions



Family First

We saw how, with polymorphic types and polymorphic functions, we have a certain
concept of parameterization. A polymorphic type denoted not just a single type, but
many different types. Similarly, a polymorphic function denoted not a single
function, but a template for many functions of different types.

Each of these functions essentially did the same thing, however1. In this lecture,
we’ll explore higher-order functions, which allows us to capture common design
patterns in code to create families of functions which all do different, but related,
things.

1They had to, in order to be polymorphically generalizable!
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Polymorphic Sorting

In the last lecture, we proposed a polymorphic sorting function that took in a
comparison function. It looked like:

fun sort (cmp : ’a * ’a -> order , L : ’a list) = (* ... *)

This sort function doesn’t do the "same essential thing", however, its behavior
depends on the cmp function it receives as input!

It turns out that, while the sort function is polymorphic, the key fact is that it is also
a higher-order function!
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First-Order Functions

When writing functions so far this semester, we’ve mostly looked at functions which
take in tuple values, and return values of base type, or other slightly more
interesting types like options, lists, or trees.

These functions are first-order. They are functions in the classic, intuitive sense.

But it is possible for a function to return a function – or for that matter, take in a
function, as well.

Def A higher-order function is a function which takes in functions or returns
functions.
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sort is Higher-Order

sort is thus a higher-order function, due to taking in the comparison function cmp.

We could write code like so:
fun mod12Compare (x, y) = Int.compare (x mod 12, y mod 12)

val sorted = sort (mod12Compare , [4, 3, 1, 2])
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sort is Higher-Order

This is kind of verbose, though. Do we need to do a fun declaration every time that
we want to specify our comparison function?

Luckily, the answer is no. Recall lambda expressions, which are anonymous function
values. We haven’t used them extensively, but it turns out something they are very
useful for is making quick functions as arguments to other functions.

Suppose we wanted to sort a list, modulo 12. Then we might write:
val L = [4, 3, 1, 2]
val sorted =

sort (fn (x, y) => Int.compare (x mod 12, y mod 12), L)
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Returning Functions

We can also return functions, not just take them in.
Def We call a function which returns another function curried.
Suppose we have our add function.

(* add : int * int -> int *)
fun add (x, y) = x + y

What if instead of taking in a tuple of both ints to be added, we returned a lambda
expression which took in the second?

(* cadd : int -> int -> int *)
fun cadd x = fn y => x + y

Note Type arrows are right-associative. This means the type
int -> int -> int means the same as int -> (int -> int).
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Syntactic Sugar

It’s a little bit of a pain to have to explicitly write out the fn y => x + y that we
return, however.

SML helps, by having some syntactic sugar for writing curried functions.

The following two definitions are equivalent:
(* cadd : int -> int -> int *)
fun cadd x = fn y => x + y
fun cadd x y = x + y

In general, you can always add more arguments (separated by spaces), which SML
will understand to mean "return a function which takes in that argument as a
parameter". This generalizes to many arguments, too.
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Using Curried Functions

Here, we say that cadd is a curried form of add! It differs from add in usage in that
arguments are passed in one by one.

val 2 = add (1, 1)
val 2 = cadd 2 2

Note that function application is left-associative, meaning that add 2 2 is the same
as (add 2) 2.

Seems these functions do the same thing. Are they extensionally equivalent?
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Correspondence of add and cadd

The answer is no! add and cadd don’t even have the same type. Two expressions
can only be extensionally equivalent if they have the same type.

So add and cadd aren’t extensionally equivalent, but they do "essentially the same
thing".

The main advantage of cadd in this scenario is that it can take in its arguments
separately. We will see later why this is a virtue, but first we have some more HOFs
to learn about.
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2 - The HOF Zoo



Abstraction

Abstraction is the name of the game in computer science.

We abstracted away bits and bytes so that we could think about data and
programs. We abstracted away unrestricted control flow for structured constructs
so that we could better reason about those programs, and we added specifications
and types so that we could better communicate what our programs do.

With higher-order functions, we can abstract code over code itself. We’ve seen this
once, by writing a sort function which varies depending on the code of the
corresponding cmp function.

This prevents us from having to rewrite multiple sort functions with the same "core
logic". Let’s see some examples of other HOFs which reduce common logic.
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Transforming Lists

Sometimes we’re interested in applying some transformation to every element of a
list.

fun incrementAll [] = []
| incrementAll (x::xs) = (x + 1) :: incrementAll xs

fun toStringAll [] = []
| toStringAll (x::xs) = Int.toString x :: toStringAll xs

If we take away the operation that we perform to each element x, the underlying
function looks exactly the same!

We will capture this phenomenon with a HOF called map.
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Map

map : (’a -> ’b) -> ’a list -> ’b list
REQUIRES: true
ENSURES: map f [x1, ..., xn] ∼= [f x1, ..., f xn]

fun map (f : ’a -> ’b) ([] : ’a list) : ’b list = []
| map f (x::xs) = f x :: map f xs

Then we obtain that incrementAll ∼= map (fn x => x + 1), and
toStringAll ∼= map Int.toString .
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Partial Application

The main strength of currying is in partial application.

Def Partial application is the act of applying some of the curried arguments to a
curried function, but not all.

Partial application lets us obtain increasingly-specific instances of a higher-order
function, which acts as a template for a family of functions that all behave the same.

In this case, map is the general design for a family of functions that entail
transforming elements of a list, and incrementAll and toStringAll are
concrete instances of this design! So instead, we could write:

val incrementAll = map (fn x => x + 1)
val toStringAll = map Int.toString
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Unnamed Arguments

Why does writing the above work? Consider the difference between
fun incrementAll L = map (fn x => x + 1) L
val incrementAll = map (fn x => x + 1)

Remember, we can do the latter because functions are values. Both ways, we end
up with incrementAll : int list -> int list .

The first declaration is a function which explicitly names its argument, L, and then
when given L, evaluates to map (fn x => x + 1) L.

The second declaration, however, is a value which is a function, and can be put next
to any argument, such as L. If we were to write incrementAll L, then by the
definition of incrementAll , we would have map (fn x => x + 1) L, which is
the same thing!
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Eta Expansion

This is a general law called eta expansion.

Def We say that for any function f : t1 -> t2, the lambda expression
fn x => f x is the eta-expanded version of f.

The key observation is that f and fn x => f x are both extensionally equivalent.
They mean the same thing.

Another way of looking at it is that functions don’t need to name their arguments –
functions already expect their arguments.
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Sorting It Out

It’s now that we can concretize our claim that sort, as defined previously, defines a
"family of functions".
We can do so by defining a new curried sort, like so:

fun sortCurried cmp L = sort (cmp , L)

They look similar, but the advantage is that now, we can see that the concrete
instances of sort, given its comparison function, define every possible sorting
function on lists!

val intSort = sortCurried Int.compare
val stringSort = sortCurried String.compare
val mod12Sort =

sortCurried (fn (x, y) => x mod 12 < y mod 12)
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Every Function Ever

The power of higher-order functions is in being able to define functions which
generalize entire code patterns, that essentially automate the process of coding for
you.

There is almost a spiritual component to the definition of these map and sort
functions, in that they inherently carry the Platonic structure of transforming a list of
data, and sorting a list of data respectively.

In the large, programming becomes the recognition and manipulation of these
archetypes, specifying them to fit your given use case. Seen in this way,
higher-order functions pave the way to, indeed, every function ever.
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Filter

Another common pattern is keeping only the elements of a list that satisfy some
predicate. This predicate might vary depending on the use case, but the overall
pattern remains the same.

This leads us to a HOF named filter .

filter : (’a -> bool) -> ’a list -> ’a list
REQUIRES: true
ENSURES: filter p xs evaluates to all elements x in xs such that p x ∼=
true, in the same order
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Filter

Filter can be implemented like so:
fun filter (p : ’a -> bool) ([] : ’a list) : ’a list = []

| filter p (x::xs) =
if p x then

x :: filter p xs
else

filter p xs
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Filter

So, for instance, we have that:
val isEven = fn x => x mod 2 = 0
val keepEvens = filter isEven
val [2, 4] = keepEvens [1, 2, 3, 4]
val keepOdds = filter (fn x => not (isEven x))
val [1, 3] = keepOdds [1, 2, 3, 4]

It’s a little ugly to have to write fn x => not (isEven x), though.
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Clean Code

Some functional programmers would rather be hit by a bus than have to write out an
explicit lambda expression, if it can be avoided.

Though we can choose to write something like map (fn x => f x) xs, as
opposed to map f xs, generally it is agreed upon that the former is ugly, and the
latter is more "clean".

We will now see something which will help us achieve this style of programming.
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Function Composition

Something you learn about early on in mathematics is function composition.

In SML, functions are meant to be closer to their mathematical counterparts. We
can define a notion of function composition for SML functions too!

We want a function which takes in two functions and essentially strings them
together. We don’t know what their types are, so we will simply call the first one
’a -> ’b, and the second ’b -> ’c. Whatever the first one returns, the second
one needs to take as input.
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Compose

Our output will be a function which takes in an input, passes it into the first function,
and then passes the result of that into the second function.

Given ’a -> ’b and ’b -> ’c, that function’s type must be ’a -> ’c.

compose : (’b -> ’c) * (’a -> ’b) -> ’a -> ’c
REQUIRES: true
ENSURES: compose (g, f) is such that compose (g, f) x ∼= g (f x), for
all x
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Compose

Let’s write it!

fun compose (g : ’b -> ’c, f : ’a -> ’b) : ’a -> ’c =
fn x => g (f x)

We take the function arguments in reverse, to be more in line with the mathematical
notation, writing g ◦ f to be the composition of g with f , such that f is applied first.

In SML, we also have o defined as the infix composition operator. So instead of
compose (g, f), we could more tersely write g o f.
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Compose

So now, instead of writing fn x => not (isEven x), we can write:

val isOdd = not o isEven

because it is extensionally equivalent.

Much more terse!
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What’s in a List?

There is one final pattern that is common to working with lists.

Oftentimes, we are interested in "summarizing" the data in a list. We are interested
in iterating over the elements of a list, producing some value which changes for
every element that we see.

This takes the form of, for instance, summing all the elements of an int list, or
concatenating all the strings in a string list.
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List Traversing Examples

For instance:
fun sum [] = 0

| sum (x::xs) = x + sum xs

fun concat [] = ""
| concat (x::xs) = x ^ concat xs

fun flatten [] = []
| flatten (x::xs) = x @ flatten xs

These all look kind of similar!
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Transforming Lists

All of these functions have a common root, in that they have some "initial value" that
is returned upon the empty list, and which is otherwise transformed by some
common operation, in conjunction with each element of the list.

In a sense, it looks very similar to this common pattern in other programming
languages:

acc = default

for x in xs :
acc = f ( x )

Let’s write it in SML!
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Folding

We call this process folding. We will implement a function, foldl , which involves
traversing the list from left to right, and transforming an accumulator value.

The type of this function will be (’a * ’b -> ’b) -> ’b -> ’a list -> ’b.

These can be broken down into four parts:
• ’a * ’b -> ’b - the "transforming function", which acts upon the

accumulator and each fresh value of the list
• ’b - the "default value" which serves as the initial accumulator
• ’a list - the list to be "folded"
• ’b - the final value to be returned, of the same type as the accumulator
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Folding, Left

foldl : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b
REQUIRES: true
ENSURES: foldl f z [x1, ..., xn] evaluates to
f (xn, ... f (x2, f (x1, z)) ...)

fun foldl f z [] = z
| foldl f z (x::xs) = foldl f (f (x, z)) xs

Essentially, when we run out of elements in the list, we simply return what we have
accumulated so far.

Otherwise, we update our accumulator and keep recursing through the list.
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A Left Folding Example

How can we recover some of the common list functions we wrote earlier, using
foldl?

Let’s implement a function which sums over all of the elements of an int list:
fun sum L = foldl (op+) 0 L

How does it work?
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Hop, Skip, and a Fold

Let’s try using our sum function.

= sum [1, 2, 3]

= foldl (op+) 0 [1, 2, 3]

= foldl (op+) (1 + 0) [2, 3]

= foldl (op+) 1 [2, 3]

= foldl (op+) (1 + 2) [3]

= foldl (op+) 3 [3]

= foldl (op+) (3 + 3) []

= foldl (op+) 6 []

= 6
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Folding, Right

That’s not the only way to fold a list, however. What if we want to fold a list from
right to left? Let’s implement foldr , of the same type.

foldr : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b
REQUIRES: true
ENSURES: foldr f z [x1, ..., xn] evaluates to
f (x1, f (x2, ... f (xn, z) ...))

fun foldr f z [] = z
| foldr f z (x::xs) = f (x, foldr f z xs)
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A Difference in Folds

The main way to remember how to implement the two folds is in when we combine
with the first element, x.

fun foldl f z [] = z
| foldl f z (x::xs) = foldl f (f (x, z)) xs

fun foldr f z [] = z
| foldr f z (x::xs) = f (x, foldr f z xs)

In foldl , due to eager evaluation, the first thing that happens is we apply f to x!
This corresponds to going left-to-right, as we want to transform the first element
first.
In foldr , due to eager evaluation, we do the application of f to x last. For similar
reasons, this corresponds to going right-to-left.
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Fold Examples

So now, how do we use foldl and foldr to implement sum, concat , and
flatten?

The simple way is simply to visualize the accumulator changing, by applying the
function to the elements and accumulator, going left to right or right to left. Recall
that the transform function f always takes the accumulator as its second argument.

val sum = foldl (op+) 0
val concat = foldr (op^) ""
val flatten = foldr (op@) []
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A Natural Fold

It is said that foldr is the "natural" fold2. We end up with all the elements in order,
merely joined by the transformation function.
Let’s try foldr (op^) "" ["I", "LOVE", "150"].

= foldr (op^) "" ["I", "LOVE", "150"]

= "I" ^ foldr (op^) "" ["LOVE", "150"]

= "I" ^ ("LOVE" ^ foldr (op^) "" ["150"])

= "I" ^ ("LOVE" ^ ("150" ^ foldr (op^) "" []))

= "I" ^ ("LOVE" ^ ("150" ^ ""))

= "ILOVE150"

2For more, consult Frank Pfenning’s excellent document
http://www.cs.cmu.edu/~me/courses/15-150-Spring2020/lectures/10/origami.pdf
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Reversing Things

For instance, let’s try foldl (op::) [] [1, 2, 3]. What do you expect to
happen?

= foldl (op::) [] [1, 2, 3]

= foldl (op::) [1] [2, 3]

= foldl (op::) [2, 1] [3]

= foldl (op::) [3, 2, 1] []

= [3, 2, 1]

We see that we end up with, essentially, 3 :: 2 :: 1 :: []. This applied the
transformation function to each element, but in reverse!
If we look at the specification of foldl , though, this is exactly what it purported to
do. We expected to see f (xn, ... f (x2, f (x1, z)) ... ).
So rev can be reimplemented as foldl (op::) []!
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3 - Mathematics of Higher-Order Functions



Equivalence

At this point, we might be wondering about the implications for mathematical
analysis of functions when higher-order functions get involved. In particular, how
does equivalence get affected?

Recall our definition for extensional equivalence on functions, for f : t1 -> t2
and g : t1 -> t2. We require that, for all values x : t1, that f x ∼= g x.

It turns out, no extra machinery is necessary! We already have a definition for when
functions should be ∼= (which is exactly the above), meaning that it’s no problem if
t2 is a function type.

Brandon Wu Higher-Order Functions 13 June 2023 44 / 48



Equivalence

It might seem a little different, however, when dealing with when t1 is a function
type. How do we reason about if two function values are the "same"?

Is fn (x, y) => x + y the same as fn (y, x) => y + x?

What about fn x => x + x versus fn x => 2 * x?

Fortunately, it doesn’t matter. While we specified that, for all values, f and g behave
the same, because of referential transparency, we identify values by whether or not
they are extensionally equivalent. So this is equivalent to saying:

If, for x ∼= y, then f x ∼= g y. This goes both ways, so we get that two extensionally
equivalent HOFs behave the same on extensionally equivalent arguments.
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Equivalence Examples

So we know that, for instance, as a consequence of the fact that fn x => 2 * x
and fn x => x + x are equivalent, then map (fn x => 2 * x) and
map (fn x => x + x) must be equivalent as well.

Even though HOFs generalize over other arbitrary code, we have a mathematical
guarantee that "equals-for-equals" still holds! HOFs then, in a sense, still act
generically over their inputs, in a way that respects extensional equivalence.

A free consequence that comes out of this: easy refactoring. Functions being used
in a higher-order context can be updated without fear of breaking a higher-order
codebase, so long as each function individually remains extensionally equivalent.3

3This is really useful.
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Hierarchies

In this lecture, we saw how we could write higher-order functions, which were
functions which generalized over other functions, possibly being able to be
specialized to arbitrary precision by splitting up arguments into curried form.

With functions like map and foldl , we can think of them as defining a hierarchy of
functions, all of which are defined from a common ancestors. Thus, the
descendants of map might be incrementAll and toStringAll , and the
descendants of foldl might be sum, concat , and flatten .

With this hereditary understanding of functions, we can abstract away even design
patterns in code, reducing boilerplate and overall achieving a more holistic
understanding.
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Thank you!


	Higher-Order Functions
	The HOF Zoo
	Mathematics of Higher-Order Functions

