


Lesson Plan

1 Dictionaries

2 Polymorphic Dictionaries

3 Type Classes

4 Functors

Brandon Wu Modules II: Functors 11 July 2023 2 / 60



Last time

Last lecture, we introduced the idea of signatures, which are first-class ideas of
interfaces, or the information that we make available about a particular part of some
software system.

We saw that we could use modules, or structures, which are groupings of
declarations like values, functions, exceptions, and types. We used transparent and
opaque ascription to ascribe these modules to signatures, which gives us the
advantage of limiting the information available to users of a given module.

Brandon Wu Modules II: Functors 11 July 2023 3 / 60



1 - Dictionaries



A Signature for Dictionaries

I want to play a game.

Let’s write a library for dictionaries.

signature STR_DICT =
sig

type key = string
type ’a t

val empty : ’a t
val insert : key * ’a -> ’a t -> ’a t
val lookup : key -> ’a t -> ’a option

end

Brandon Wu Modules II: Functors 11 July 2023 5 / 60



An Implementation for Dictionaries

structure Dict :> STR_DICT =
struct

type key = string
type ’a t = (key * ’a) tree

val empty = []
fun insert (k, v) L = (k, v) :: remove (k, v) L
fun lookup k [] = NONE

| lookup k ((k’, v’)::xs) =
if k = k’ then SOME v’

end

Brandon Wu Modules II: Functors 11 July 2023 6 / 60



An Implementation for Dictionaries

This implementation is pretty simple, but it is reasonably inefficient. Because we
implement our dictionaries as lists, we might have to traverse to the end of the list
to do a lookup! This gives us a lookup cost of O(n), which is a little pricey.

What’s another data structure that we know about for storing data in a more
efficiently queryable way?

Brandon Wu Modules II: Functors 11 July 2023 7 / 60



Binary Search Trees

Binary search trees are one such data structure!

We will use a comparison function to store the elements of the tree in an ordered
way, so that we only need to go on one side of the tree, when we search for any
given element. In this case, since our dictionary has string keys, this will be
String.compare .

This will give us O(log n) search time.1

Let’s implement it.

1At least, in principle. In actuality, we have no guarantee that such BSTs are relatively balanced,
meaning that search time may be linear still. We will leave this problem for another lecture.

Brandon Wu Modules II: Functors 11 July 2023 8 / 60



A Tree-Based Implementation for Dictionaries

structure Dict :> STR_DICT =
struct

type key = string
type ’a t = (key * ’a) tree

val empty = Empty

(* ... *)

Now, we need to implement our insert and lookup functions. These will take the
form of straightforward recursive functions on trees.

Note In this case, we choose to opaquely ascribe the Dict structure to the
STR_DICT signature.

Brandon Wu Modules II: Functors 11 July 2023 9 / 60



A Tree-Based Implementation for Dictionaries

(* ... *)

fun insert (k, v) Empty = Node (Empty , (k, v), Empty)
| insert (k, v) (Node (L, (k’, v’), R)) =

case String.compare (k, k’) of
EQUAL => Node (L, (k, v), R)

| LESS => Node (insert (k, v) L, (k’, v’), R)
| GREATER => Node (L, (k’, v’), insert (k, v) R)

fun lookup (k, v) Empty = NONE
| lookup (k, v) (Node (L, (k’, v’), R)) =

case String.compare (k, k’) of
EQUAL => SOME v’

| LESS => lookup (k, v) L
| GREATER => lookup (k, v) R

end

Brandon Wu Modules II: Functors 11 July 2023 10 / 60



Dictionary Invariants

Note that we chose to opaquely ascribe to the DICT signature.

This is because binary search trees have an important invariant, which is that they
are sorted by their comparison function! Just like in the last lecture, we choose to
do some information hiding so that users cannot see the type of the dictionary,
and thus cannot break that invariant.

Brandon Wu Modules II: Functors 11 July 2023 11 / 60



2 - Polymorphic Dictionaries



Generality in Dictionaries

This is cool and all, but what if we don’t want the keys to be strings?
This comes up all the time, actually. Often, we want an arbitrary map from values of
type t1 to values of type t2, where t1 can be something arbitrarily complicated! It
could be lists of strings, it could be a database records for students, it could be a
set of names.
What we don’t want is to have to write a function of type t1 -> string and use
that as a preprocessing step every time we use a dictionary.

fun getStudentGrade (x : student) (records : int Dict.t) =
let

val student_string : string = studentToString x
in

Dict.lookup student_string records
end

Brandon Wu Modules II: Functors 11 July 2023 13 / 60



A Generic Dictionary

signature POLY_DICT =
sig

(* mapping keys of type ’a to values of ’b *)
type (’a, ’b) t

val empty : (’a, ’b) t
val insert : ’a * ’b -> (’a, ’b) t -> (’a, ’b) t
val lookup : ’a -> (’a, ’b) t -> ’b option

end

A structure ascribing to POLY_DICT implements dictionaries of arbitrarily-typed
keys. It is doubly polymorphic, in that it takes in two type variables, ’a for the type
of its keys, and ’b, for the type of its values.

Brandon Wu Modules II: Functors 11 July 2023 14 / 60



An Implementation for Polymorphic Dictionaries

structure Dict :> POLY_DICT =
struct

type (’a, ’b) t = (’a * ’b) tree

val empty = Empty

fun insert (k, v) Empty = Node (Empty , (k, v), Empty)
| insert (k, v) (Node (L, (k’, v’), R)) =

(* what do we do now? *)

fun lookup (k, v) Empty = NONE
| lookup (k, v) (Node (L, (k’, v’), R)) =

(* or here ... *)
end

Brandon Wu Modules II: Functors 11 July 2023 15 / 60



An Implementation for Polymorphic Dictionaries

Uh oh. How do we compare our key, of an arbitrary type ’a, to another key of an
arbitrary type ’a?2

Similarly to how we tried to implement sort : ’a list -> ’a list, we need a
little bit of a helping hand here, because we don’t know what our comparison
function is!

2It is technically misleading to say "of type ’a", because I really mean something more like, for
some type t, two keys of type t. But this is close enough.

Brandon Wu Modules II: Functors 11 July 2023 16 / 60



A Generic Dictionary, v2

signature POLY_DICT =
sig

(* mapping keys of type ’a to values of ’b *)
type (’a, ’b) t

val empty : (’a, ’b) t
val insert :

(’a * ’a -> order) -> ’a * ’b -> (’a, ’b) t -> (’a, ’b) t
val lookup :

(’a * ’a -> order) -> ’a -> (’a, ’b) t -> ’b option
end

This looks better. We use the same familiar of parameterizing our insert and
lookup functions by a comparison function.

Brandon Wu Modules II: Functors 11 July 2023 17 / 60



An Implementation for Polymorphic Dictionaries, v2

structure Dict :> STR_DICT =
struct

type (’a, ’b) t = (’a * ’b) tree

val empty = Empty

(* ... *)

This part stays the same.

Brandon Wu Modules II: Functors 11 July 2023 18 / 60



An Implementation for Polymorphic Dictionaries, v2

(* ... *)

fun insert cmp (k, v) Empty = Node (Empty , (k, v), Empty)
| insert cmp (k, v) (Node (L, (k’, v’), R)) =

case cmp (k, k’) of
EQUAL => Node (L, (k, v), R)

| LESS => Node (insert cmp (k, v) L, (k’, v’), R)
| GREATER => Node (L, (k’, v’), insert cmp (k, v) R)

fun lookup cmp (k, v) Empty = NONE
| lookup cmp (k, v) (Node (L, (k’, v’), R)) =

case cmp (k, k’) of
EQUAL => SOME v’

| LESS => lookup cmp (k, v) L
| GREATER => lookup cmp (k, v) R

end

Brandon Wu Modules II: Functors 11 July 2023 19 / 60



The End of the Road

Alright, that’s polymorphic dictionaries. End of the road. We’re done here.

. . .

Or are we?

Brandon Wu Modules II: Functors 11 July 2023 20 / 60



Using Polymorphic Trees

Consider the following trace of code.

val empty : (string , int) Dict.t = Dict.empty

val T1 = Dict.insert String.compare ("hi", 0) empty
val T2 = Dict.insert String.compare ("there", 1) T1

"hi" 7→ 0

T1

"hi" 7→ 0

"there" 7→ 1

T2

Brandon Wu Modules II: Functors 11 July 2023 21 / 60



A Curious Comparison

Consider the following comparison function, however:
fun to_pig_latin s =

case String.explode s of
[] => "ay"

| c::cs => String.implode (cs @ [c]) ^ "ay"

fun compare_pig_latin (s1 , s2) =
String.compare (to_pig_latin s1, to_pig_latin s2)

This comparison function just compares two strings in Pig Latin3 instead of in
regular text.

3See this reference for more
Brandon Wu Modules II: Functors 11 July 2023 22 / 60

https://en.wikipedia.org/wiki/Pig_Latin


A Porcine Insertion

Notably, this is a valid comparison function of type string * string -> order !

That means we can use it in conjunction with our (string , int) Dict.t trees
that we defined earlier.

val T3 = Dict.insert compare_pig_latin ("class", 2) T2

How does this insertion happen?

Brandon Wu Modules II: Functors 11 July 2023 23 / 60



A Porcine Insertion

Inserting: "class" 7→ 2

"hi" 7→ 0

"there" 7→ 1

T2

Comparing:

"class" "hi"

pig latin!

"lasscay" "ihay"

GREATER

Brandon Wu Modules II: Functors 11 July 2023 24 / 60



A Porcine Insertion

Inserting: "class" 7→ 2

"hi" 7→ 0

"there" 7→ 1

T2

Comparing:

"class" "there"

pig latin!

"lasscay" "heretay"

GREATER

Brandon Wu Modules II: Functors 11 July 2023 25 / 60



A Porcine Insertion

So finally, we end up with this tree:

"hi" 7→ 0

"there" 7→ 1

"class" 7→ 2

T3

Who sees an issue?

Brandon Wu Modules II: Functors 11 July 2023 26 / 60



A Classic Search

What happens if we try to look up the key class using our original
String.compare function?

"hi" 7→ 0

"there" 7→ 1

"class" 7→ 2

T3

Well, String.compare ("class", "hi") ∼= GREATER , so:

Brandon Wu Modules II: Functors 11 July 2023 27 / 60



A Classic Search

"hi" 7→ 0

"there" 7→ 1

"class" 7→ 2

T3

And String.compare ("class", "there") ∼= LESS .
But, this means we need to go left, and the left node is Empty , so we don’t find the
mapping of "class" to 2 at all!
What went wrong?

Brandon Wu Modules II: Functors 11 July 2023 28 / 60



Mixing and Matching

The problem is that we mixed and matched our comparison functions.

We originally had a tree which was a BST according to String.compare , and then
tried to insert a value into it as if it was a BST for our compare_pig_latin function!

Key Fact There is no static guarantee that we give Dict.lookup and
Dict.insert the same comparison functions.

We must merely exercise caution and care to make sure that we don’t mix up our
comparison functions. This sounds like a precondition – but can we do better?

Brandon Wu Modules II: Functors 11 July 2023 29 / 60



3 - Type Classes



Concrete and Abstract

Signatures can either specify their types as concrete types, or leave them as
abstract types, with definitions which are left to the structures that implement
them. For instance, in the signature of POLY_DICT , the dictionary type (’a, ’b) t
was left abstract, because the implementation of dictionaries could be anything.

We previously described opaque ascription as having the primary benefit of hiding
the definitions of all involved abstract types, which helps in maintaining invariants
and abstraction.

Sometimes, we might still want to transparently ascribe to a signature, though. This
is most salient with type classes.

Brandon Wu Modules II: Functors 11 July 2023 31 / 60



Type Classes

Def A type class is the signature which describes a type, and some operations
which may be performed on that type.

We use type classes to implement structures which ascribe to that type class,
which witnesses the fact that some type supports that type class’s operations.

We call those structures which ascribe to a type class an instance of that type class.

Brandon Wu Modules II: Functors 11 July 2023 32 / 60



Type Classes

For instance, consider the following signature, which is a type class:
signature ORD =

sig
type t

val compare : t * t -> order
end

This type class describes all types which admit a comparison function on them.
Notably, this is a signature, meaning that it is only a description that a module could
implement, but not an implementation itself!

Brandon Wu Modules II: Functors 11 July 2023 33 / 60



Orderable Types

Let’s see some examples of implementations of the ORD signature:
structure StrOrd : ORD =

struct
type t = string
val compare = String.compare

end

structure IntOrd : ORD =
struct

type t = string
val compare = Int.compare

end

Brandon Wu Modules II: Functors 11 July 2023 34 / 60



Orderable Types

structure PigLatinOrd : ORD =
struct

type t = string
val compare = compare_pig_latin

end

Each of these structures are instances of the ORD type class, for a particular type!

Note We choose to transparently ascribe these structures, because the point of a
typeclass is that you know what the type inside of it is. I mean, it’s in the name of
the structure.

Note also how there can be multiple type classes for a single type, because there is
not necessarily a single "canonical" kind of way to order a type. It depends on your
context.

Brandon Wu Modules II: Functors 11 July 2023 35 / 60



A Generic Dictionary, v3

signature POLY_DICT =
sig

structure Key : ORD

(* mapping keys of type Key.t to values of ’a *)
type ’a t

val empty : ’a t
val insert : Key.t * ’a -> ’a t -> ’a t
val lookup : Key.t -> ’a t -> ’a option

end

We make a third attempt at establishing a POLY_DICT signature. This time, instead
of relying on doubly-parameterizing our dictionary type in the keys and values, we
introduce an interior structure Key, which ascribes to the signature ORD.

Brandon Wu Modules II: Functors 11 July 2023 36 / 60



An Implementation for Polymorphic Dictionaries, v3

In essence, we are specifying that implementations of POLY_DICT should come
packaged with an implementation of the ORD type class. In essence, we are
localizing our comparison function to the one provided by Key!
Here is one such implementation:

structure StrDict :> POLY_DICT =
struct

structure Key = StrOrd

type ’a t = (Key.t * ’a) tree

val empty = Empty

(* ... *)

Brandon Wu Modules II: Functors 11 July 2023 37 / 60



An Implementation for Polymorphic Dictionaries, v3

(* ... *)
fun insert (k, v) Empty = Node (Empty , (k, v), Empty)

| insert (k, v) (Node (L, (k’, v’), R)) =
case Key.compare (k, k’) of

EQUAL => Node (L, (k, v), R)
| LESS => Node (insert (k, v) L, (k’, v’), R)
| GREATER => Node (L, (k’, v’), insert (k, v) R)

fun lookup (k, v) Empty = NONE
| lookup (k, v) (Node (L, (k’, v’), R)) =

case Key.compare (k, k’) of
EQUAL => SOME v’

| LESS => lookup (k, v) L
| GREATER => lookup (k, v) R

end

(We also got rid of the cmp functions, but it’s hard to highlight the absence of something)
Brandon Wu Modules II: Functors 11 July 2023 38 / 60



Type Troubles

What happens if we try to actually use this implementation, however?

What gives? We defined the inner Key structure as StrOrd . Shouldn’t this
type-check?

Brandon Wu Modules II: Functors 11 July 2023 39 / 60



Too Opaque

signature POLY_DICT =
sig

structure Key : ORD

(* mapping keys of type Key.t to values of ’a *)
type ’a t

val empty : ’a t
val insert : Key.t * ’a -> ’a t -> ’a t
val lookup : Key.t -> ’a t -> ’a option

end

Recall that StrDict opaquely ascribes to this signature, POLY_DICT . This hides
the type of ’a t, as we wanted, but it also hides the type of Key.t! There’s nothing
here which tells us that Key.t is string .

Brandon Wu Modules II: Functors 11 July 2023 40 / 60



Selective Transparency

Fortunately, there is a mechanism in SML that lets us change a signature to one
which is slightly more transparent, by explicitly defining some types, and making
them no longer opaque.

Def We can modify a signature with selective transparency by the syntax
SIG where type <name > = <type >, which defines that the type named <name >
is explicitly defined as the input <type >.

So, for instance, instead of writing POLY_DICT , we can write
POLY_DICT where type Key.t = string to achieve the same signature, but
where Key.t is explicitly string .

Brandon Wu Modules II: Functors 11 July 2023 41 / 60



An Implementation for Polymorphic Dictionaries, v4

Our new implementation looks very similar to the last, we just change one line:

structure StrDict :> POLY_DICT where type Key.t = string =
struct

structure Key = StrOrd

type ’a t = (Key.t * ’a) tree

val empty = Empty

(* ... *)

end

That’s it!
Brandon Wu Modules II: Functors 11 July 2023 42 / 60



Success

Now we can use the StrDict module, at the correct type.

Brandon Wu Modules II: Functors 11 July 2023 43 / 60



Generality?

But wait, all of this implementation was ultimately just specific to the StrOrd
structure. This amounts to being exactly equivalent to our original dictionary, when
we did dictionaries of only strings! What gives?

We haven’t really achieved generality, because we would have to write this text
again for every single Key structure we are interested in using, like IntOrd , or
PigLatinOrd , etc.

If only there was some way we could parameterize our code on other modules.

Brandon Wu Modules II: Functors 11 July 2023 44 / 60



4 - Functors



From Structure to Structure

We have seen an analogy where we have structures, which are groupings of values
and other declarations, and which have a kind of "type", or interfaces, namely in the
form of signatures.

We can think of this as a correspondence between values and structures, which are
described by types and signatures, respectively. We also have functions, which act
as maps between values to values.

Functors are the module analogue of functions, as maps from structures to
structures.

Values Types Functions

Structures Signatures Functors

Brandon Wu Modules II: Functors 11 July 2023 46 / 60



The Syntax of Functors

The syntax of functors is as follows:
functor Name (Arg : SIG) =

struct
(* ... *)

end

It looks similar to that of a structure , except a functor can take in a module. In
this case, this declares a functor named Name, which takes in a module which it
names Arg, so long as the input module ascribes to the signature SIG.

This is analogous to a function declaration
fun name (arg : int) = (* ... *), which is named name, and takes in a
value it names arg, so long as the input value has type int.

Brandon Wu Modules II: Functors 11 July 2023 47 / 60



Ordering Pairs

One application of functors is in creating a functor which can create instances of
the ORD type class out of other instances of the ORD type class.
For instance, suppose we would like to order arbitrary tuples of two types, t1 and
t2. It would be annoying to have to write out, for every permutation of types,

structure IntStrOrd : ORD =
struct

type t = int * string

fun compare ((i1, s1), (i2, s2)) =
case Int.compare (i1, i2) of

EQUAL => String.compare (s1, s2)
| LESS => LESS
| GREATER => GREATER

end

Brandon Wu Modules II: Functors 11 July 2023 48 / 60



Composing Type Classes

functor PairOrd (structure A : ORD
structure B : ORD) =

struct
type t = A.t * B.t

fun compare ((a1, b1), (a2, b2)) =
case A.compare (a1, a2) of

EQUAL => B.compare (b1, b2)
| LESS => LESS
| GREATER => GREATER

end

This functor takes in two structures, A and B, both ascribing to ORD, and then does
the natural left-to-right comparison of a tuple containing both, by leveraging the
provided A.compare and B.compare functions.

Brandon Wu Modules II: Functors 11 July 2023 49 / 60



Composing Type Classes

functor PairOrd (structure A : ORD
structure B : ORD) =

struct
type t = A.t * B.t

fun compare ((a1, b1), (a2, b2)) =
case A.compare (a1, a2) of

EQUAL => B.compare (b1, b2)
| LESS => LESS
| GREATER => GREATER

end

But wait, what is going on in the highlighted region?

Brandon Wu Modules II: Functors 11 July 2023 50 / 60



Functorial Syntactic Sugar

Sometimes we are interested in a little more versatility in what our functor takes in.
We might, for instance, want to take in a type and a value instead of just a module,
or more than one structure.
To that end, we can write the following syntax for a functor which takes in a type t
and a value x of type int:

functor Name (type t
val x : int) =

struct
(* ... *)

end

Note There is no semicolon or comma between the two declarations of type t
and val x : int. There’s just space.
It is worth noting that this is just syntactic sugar, though!

Brandon Wu Modules II: Functors 11 July 2023 51 / 60



Functorial Syntactic Sugar

Note It is important to realize that a functor can only take in one structure.
This is no big issue, though, because structures themselves can contain types and
values. The above syntax is really defining a functor Name, which takes in an
unnamed structure, which ascribes to the signature

sig
type t
val x : int

end

We can, however, use the same syntactic sugar when calling the functor.

structure Result = Name (type t = string
val x = 3)

Brandon Wu Modules II: Functors 11 July 2023 52 / 60



A Common Pitfall

It is important to realize this, because this means that our previous definition of
PairOrd is really taking in a single structure, which contains two structures A and B!

So in order to use it, we would write
structure IntStrOrd = PairOrd (structure A = IntOrd

structure B = StrOrd)

which will package both IntOrd and StrOrd into an unnamed module, which
contains a module named A and B, which are just IntOrd and StrOrd .

This can mess you up. The important thing to remember: do not mix syntactic sugar
and not syntactic sugar! If you define a functor with syntactic sugar, you must call it
using syntactic sugar.

Brandon Wu Modules II: Functors 11 July 2023 53 / 60



An Implementation for Polymorphic Dictionaries, v5

So now let’s implement our polymorphic dictionaries, but now using this functor
idea, so we can parameterize over all the possible key type classes.

functor MkDict (Key : ORD) :> POLY_DICT =
struct

structure Key = Key

type ’a t = (Key.t * ’a) tree

val empty = Empty

(* ... *)

Brandon Wu Modules II: Functors 11 July 2023 54 / 60



An Implementation for Polymorphic Dictionaries, v5

(* ... *)
fun insert (k, v) Empty = Node (Empty , (k, v), Empty)

| insert (k, v) (Node (L, (k’, v’), R)) =
case Key.compare (k, k’) of

EQUAL => Node (L, (k, v), R)
| LESS => Node (insert (k, v) L, (k’, v’), R)
| GREATER => Node (L, (k’, v’), insert (k, v) R)

fun lookup (k, v) Empty = NONE
| lookup (k, v) (Node (L, (k’, v’), R)) =

case Key.compare (k, k’) of
EQUAL => SOME v’

| LESS => lookup (k, v) L
| GREATER => lookup (k, v) R

end

Brandon Wu Modules II: Functors 11 July 2023 55 / 60



Using Functors

Now, we can easily define dictionary structures by using our functor MkDict , like so:
structure IntDict = MkDict (IntOrd)
structure StrDict = MkDict (StrOrd)
structure PigLatinDict = MkDict (PigLatinOrd)

Much, much nicer.

Brandon Wu Modules II: Functors 11 July 2023 56 / 60



Using Functors

Now, we have the advantage that statically, IntDict.t, StrDict.t, and
PigLatinDict.t are all recognized as separate types.

Even though StrDict.t and PigLatinDict.t have the same representation on
the inside, they cannot be mixed, and they use their own comparison functions
independently of each other.

Most critically, we avoid having to write intense amounts of boilerplate, and can (in
a type-safe way) reuse our implementation of dictionaries, even though it was
predicated on different types.

That’s pretty cool!

Brandon Wu Modules II: Functors 11 July 2023 57 / 60



The Final Signature

signature POLY_DICT =
sig

structure Key : ORD

(* mapping keys of type Key.t to values of ’a *)
type ’a t

val empty : ’a t
val insert : Key.t * ’a -> ’a t -> ’a t
val lookup : Key.t -> ’a t -> ’a option

end

Brandon Wu Modules II: Functors 11 July 2023 58 / 60



The Final Implementation

functor MkDict (Key : ORD) :> POLY_DICT =
struct

structure Key = Key

type ’a t = (Key.t * ’a) tree

val empty = Empty

fun insert (k, v) Empty = Node (Empty , (k, v), Empty)
| insert (k, v) (Node (L, (k’, v’), R)) =

case Key.compare (k, k’) of
EQUAL => Node (L, (k, v), R)

| LESS => Node (insert (k, v) L, (k’, v’), R)
| GREATER => Node (L, (k’, v’), insert (k, v) R)

fun lookup (k, v) Empty = NONE
| lookup (k, v) (Node (L, (k’, v’), R)) =

case Key.compare (k, k’) of
EQUAL => SOME v’

| LESS => lookup (k, v) L
| GREATER => lookup (k, v) R

end

Brandon Wu Modules II: Functors 11 July 2023 59 / 60



Thank you!


	Dictionaries
	Polymorphic Dictionaries
	Type Classes
	Functors

