

Lesson Plan

1 Rewind

2 Course Themes

3 Saying Goodbye

Brandon Wu Finale 08 August 2023 3 / 108

1 - Rewind

Rewinding Time

It’s been a long semester.

12 weeks have soared by. We’ve made it through fire alarms, compiler bugs, and
Andrew machine outages, and although it’s been tough, we made it through
nonetheless. You’ve survived homeworks, you’ve survived midterms, and now,
we’re nearing the end.

Now, it’s time to review everything that we’ve learned. In the style of Michael
Erdmann, I’m going to do so by going backwards – by starting at the end, and going
back to the beginning.

Let’s play back everything that we’ve learned.

Brandon Wu Finale 08 August 2023 5 / 108

Lecture 21: Program Analysis

Programs are inherently recursive.

Expressing something which has as much rich, semantic information as a program
can be as simple as a recursive datatype declaration in SML. Determining something
about a program can be as simple as recursive function on a tree-like structure.

Program analysis is the final frontier of use cases for functional programming.

Lesson We can make a real difference, by using clean foundations and principled
methods to achieve real impact.

Brandon Wu Finale 08 August 2023 7 / 108

Lecture 20: Compilers

Functional programming was made for compilers.1

The same tools that we use every day, the same magic that powers the principles of
computer science that you study, are not so magic after all. Pure functions, safe
code, and tree transformations are simple principles that you’ve learned over the
course of the semester, but come to a head in one of the most fundamental
applications in computer science.

Safety, elegance, expressivity. When writing a compiler, that’s what you need.

Lesson Nothing can’t be understood, if you can break it down to its most
fundamental principles. The same foundations which make up a simple treesum
function run in the DNA of the most complicated systems in the world.

1Technically, it was made for AI. But that’s a different, longer story.
Brandon Wu Finale 08 August 2023 9 / 108

Lecture 19: Imperative Programming

Eventually, we learned that functional programming doesn’t need to be such an
absolute concept!
We learned about ref cells, which involve a type ’a ref of mutable boxes which
store values of type ’a. We learned about the following primitives:

val ref : ’a -> ’a ref
val ! : ’a ref -> ’a
val := : ’a ref * ’a -> unit

which let us create, access, and manipulate boxes within our store:

1

r1

"5"

r2

0

r3

Brandon Wu Finale 08 August 2023 11 / 108

Lecture 19: Imperative Programming

Mutability introduces many footguns when it comes to comprehending programs
and debugging code, but it’s all about how you use it. We can make mutability work
for us, so long as we only opt-in to it, and we respect our principles of safety,
readability, and elegance.

We are not beholden to certain ideas, just because we think that we should be. We
invented abstractions to make them work for us, not the other way around.

Lesson Mutability is not so bad, so long as you have the choice.

Brandon Wu Finale 08 August 2023 12 / 108

Lecture 18: Lazy Programming

Lambdas allow us to suspend computations in the form of a thunk, or a value of
type unit -> t.

This offers us fine-grained control over exactly when and where computations
happen. We can then use these to write lazy programs, which delay computations
until they absolutely need to happen.

We saw this through the ’a stream datatype, which defines a type of maximally
lazy data structures, that do not compute any elements until they are explicitly
exposed.

datatype ’a stream = Stream of unit -> ’a front
and ’a front = Nil | Cons of ’a * ’a stream

Brandon Wu Finale 08 August 2023 14 / 108

Lecture 18: Lazy Programming

We can easily define coinductive streams via recursive functions without base
cases, as in the case of the stream of natural numbers:

fun natsFrom n = Cons (n, fn () => natsFrom (n + 1))
val nats = natsFrom 0

Finite, infinite, we can express all of these ideas within Standard ML, via this simple
idea. It all just comes out of mindful weaponization of our understanding of
evaluation order.

Lesson Repeated application of simple ideas can lead to something great.

Brandon Wu Finale 08 August 2023 15 / 108

Lecture 17: Sequences

Sequences are a signature for parallel-friendly, abstract data structures which are
better for bulk operations on data.
As an abstract type, we render them symbolically with the notation

⟨x1, x2, ..., xn⟩

and think of them conceptually as immutable arrays, where we can act on each
element individually.
We saw that while they offer mostly the same operations as lists, they fit different
use cases, in particular for when we are working with large collections of data, and
don’t need to perform any sequential operations.
We also saw that, given a simple mathematical idea of associativity, we could
present a brand new way to implement something like foldl , leading to reduce via
a divide-and-conquer approach!

Brandon Wu Finale 08 August 2023 17 / 108

Lecture 17: Sequences

g g g g
g g

· · · · · ·

· · ·

· · ·

g g

g

(lots of stuff here)

Brandon Wu Finale 08 August 2023 18 / 108

Lecture 17: Sequences

We also saw that we had this idea of cost graphs, which represent the cost of some
computation by composing other cost graphs either parallel or sequentially.

Seen in this way, we can recover the cost of any higher-order function on
sequences by merely composing these cost graphs together.

For instance, take the cost graph for tabulate :

f 0 f 1 f (n-2)· · · f (n-1)

Brandon Wu Finale 08 August 2023 19 / 108

Lecture 17: Sequences

From this cost graph, we can derive the cost graph of the expression
Seq.tabulate (fn i => f (Seq.nth (S, i))) (Seq.length S) as:

f 0 f 1 · · · f (n-2) f (n-1)

This follows from simply "gluing together" the cost graphs of the f function, and the
constant cost of nth, replacing them for the f nodes in the cost graph of
tabulate , as well as adding the constant cost from length .
Lesson Functional programs are parallel-friendly, and can admit easy composable
bulk operations.

Brandon Wu Finale 08 August 2023 20 / 108

Lecture 16: Red-Black Trees

We learned about red-black trees, a
self-balancing binary tree with three invariants:
• the tree is a binary search tree
• the number of black nodes on any path to an

Empty node is the same (black height
invariant)
• a child of a red node must be black (red child

invariant)

We saw that by a strategy of briefly breaking, and
then restoring, our invariants, we could ensure
that we always produced valid red-black trees
through insertion.

4

2

1

0

3

5

Black height invariant: ✓

Red children invariant: ✓

Brandon Wu Finale 08 August 2023 22 / 108

Lecture 16: Red-Black Trees

This was carefully witnessed via our usage of rotations to restore our invariants
locally, but by pushing inconsistencies to our recursive callers.

z

y

x

11 22

33

44
7−→

y

x

11 22

z

33 44

←− [

z

x

11 y

22 33

44

Lesson Abstract types and enforced invariants can help us achieve safer and more
intuitive code. Put simply, knowing less is sometimes more.

Brandon Wu Finale 08 August 2023 23 / 108

Lecture 15: Functors

We learned about functors as maps from modules to modules, which allow us to
neatly mix and match different parts of our codebase together.

In particular, we used it in
combination with typeclasses,
which allow us to attach values to
particular types, for instance when
choosing instances of a comparison
function to go with a type.

This lets us modularize our code on
other code, in a more powerful way
than HOFs!

signature ORD =
sig

type t
val compare : t * t -> order

end

structure IntOrd =
struct

type t
val compare = Int.compare

end

Brandon Wu Finale 08 August 2023 25 / 108

Lecture 15: Functors

We successfully used this to define a generic dictionary functor, which could be
used to define any kind of dictionary library. All we needed to do was provide an
instance of ORD, and the functor could automate away the rest of the logic for us.

functor MkDict (Key : ORD) :> POLY_DICT =
struct

structure Key = Key

type ’a t = (Key.t * ’a) tree

val empty = Empty

(* ... *)
end

Lesson Good software should be composable in terms of other software.
Brandon Wu Finale 08 August 2023 26 / 108

Lecture 14: Structures and Signatures

In this lecture we learned about modules, which allow us to organize and separate
our code into distinct namespaces.
Most powerfully, we could use signatures to specify the types and definitions that
we wanted exported from any given module, meaning that interfaces between
software components can be typed and verified.

signature INTSET =
sig

type t

val empty : t
val insert : int -> t -> t
val remove : int -> t -> t
val mem : int -> t -> bool

end

Brandon Wu Finale 08 August 2023 28 / 108

Lecture 14: Structures and Signatures

With opaque ascription, we can hide the definition of certain types, causing
abstract types to be unknown to a user of a given library.

This gives us enormous power when it comes to maintaining invariants and making
software conceptually simpler to deal with.

Lesson Software is easier to understand, easier to work with, and better overall
when you can separate your interfaces cleanly.

Brandon Wu Finale 08 August 2023 29 / 108

Lecture 13: Regular Expressions

Regular expressions are a recursive datatype representing a mathematical object
that corresponds to a certain set of strings.
Via simple operators, we can mix and match regular expressions to denote certain
languages of interest:

Construct Language matched

L(c) {c}

L(0) {}

L(1) {ϵ}

L(r1 + r2) L(r1) ∪ L(r2)

L(r1r2) {s1s2 | s1 ∈ L(r1), s2 ∈ L(r2)}

L(r∗) {s1...sn | for n ≥ 0,when ∀i, si ∈ L(r)}

Brandon Wu Finale 08 August 2023 31 / 108

Lecture 13: Regular Expressions

In SML, this gets even more interesting with the implementation of the match
matcher, which recursively decomposes on a regular expression to match strings in
the language, given a regular expression r and a "suffix continuation" k.
We saw that we could reason about the matcher in terms of a kind of proof by
picture, by thinking about the picture of matching a prefix and suffix that satisfy the
specification.

prefix suffix

matched by r satisfies k

entire character list cs

Lesson Reasoning by specification or intuition is significantly more powerful than
reasoning via stepping through code itself.

Brandon Wu Finale 08 August 2023 32 / 108

Lecture 12: Exceptions

We learned how to define exceptions, which are constructors of the extensible
type exn, which can have arbitrarily many constructors added to it during runtime.

datatype exn = Match | Bind | Div | Fail of string | ...

We saw how we could use exceptions as escape hatches during exceptional cases
for functions, as well as ways to jump to handlers that can then continue on with
the program.

Brandon Wu Finale 08 August 2023 34 / 108

Lecture 12: Exceptions

This manifested in exception-handling style, which resembles CPS, but replaces a
failure continuation with exceptions.

exception NotFound

fun searchEHS p Empty = raise NotFound
| searchEHS p (Node (L, x, R)) =

if p x then
x

else
(searchEHS p L) handle NotFound => searchEHS p R

Lesson It’s OK to take quick, less-maintainable shortcuts, so long as you are
judicious with their usage. Put simply, there’s an exception to every rule.

Brandon Wu Finale 08 August 2023 35 / 108

Lecture 11: Continuation-Passing Style

We derive continuation-passing style by just considering what happens when we
pass the result of a recursive call forward via piping into a lambda. So we might
translate it as:

First we replace all recursive calls
with a placeholder variable.

Then we obtain the placeholder
variables via just making recursive
calls, and piping into an explicit
lambda.

Observe that this is just extensionally
equivalent to our original treesum
function.

fun treesum Empty = 0
| treesum (Node (L, x, R)) =

treesum L + x + treesum R

fun treesum Empty = 0
| treesum (Node (L, x, R)) =

resL + x + resR

fun treesum Empty = 0
| treesum (Node (L, x, R)) =

treesum L |> (fn resL =>
treesum R |> (fn resR =>
resL + x + resR))

Brandon Wu Finale 08 August 2023 37 / 108

Lecture 11: Continuation-Passing Style

This is not yet CPS, but what
happens if we, instead of piping into
a lambda, pass the lambda into the
function itself?

Now, we derive CPS from very simple
ideas! All we need to do is to make
our recursive calls explicit.

Lesson Complicated things can be
made simple once you have an
algorithm for it.

fun treesumCPS Empty k = 0
| treesumCPS (Node (L, x, R)) k =

treesumCPS L (fn resL =>
treesumCPS R (fn resR =>
resL + x + resR))

fun treesumCPS Empty k = 0 |> k
| treesumCPS (Node (L, x, R)) k =

treesumCPS L (fn resL =>
treesumCPS R (fn resR =>
resL + x + resR |> k))

Brandon Wu Finale 08 August 2023 38 / 108

Lecture 10: Combinators and Staging

As a precursor to our eventual knowledge of streams and laziness, we found that
we could control the evaluation of SML code via being particular about where it
appeared relative to a given function’s arguments.
So that this function:

fun foo x y =
horrible_computation x + y

can instead be staged as such:
fun foo x =

let
val res = horrible_computation x

in
fn y => res + y

end

Brandon Wu Finale 08 August 2023 40 / 108

Lecture 10: Combinators and Staging

We then learned about piping operators like |>, which represent an ultimate form of
higher-order programming, that lets us manipulate the format of any code to our
liking.

remove (wait 2 (insert trayOfMozzarellaSticks (heat oven 400)))

heat oven 400
|> insert trayOfMozzarellaSticks
|> wait 2
|> remove

Lesson Pretty privilege is OK when it applies to code.

Brandon Wu Finale 08 August 2023 41 / 108

Lecture 9: Higher-Order Functions

Here, we learned about currying, which is simply a function which takes in "multiple
arguments", by returning a function which takes the rest of the arguments.

(* add : int * int -> int *)
fun add (x, y) = x + y

(* addC : int -> int -> int *)
val addC = fn x => fn y =>
(* syntactic sugar! *)
fun addC x y = x + y

We saw that, just by adjusting our perspective, something as simple as functions
being able to return something of function type would have a massive influence on
our style of programming.

Brandon Wu Finale 08 August 2023 43 / 108

Lecture 9: Higher-Order Functions

We also saw the role that higher-order functions have in terms of being able to
capture the very design patterns of our code.

So then, seen in this light, functions like sum and concat have the same "DNA" –
the information content of their code follows the same pattern.

fun sum [] = 0
| sum (x::xs) = x + sum xs

fun concat [] = ""
| concat (x::xs) = x ^ concat xs

Brandon Wu Finale 08 August 2023 44 / 108

Lecture 9: Higher-Order Functions

Higher-order functions are an essential tool in functional programming that are
pivotal to many of the things we studied later.

HOFs ultimately ended up opening the first conceptual door to much greater things,
such as match , such as CPS, and such as many of the functions we could write on
streams and sequences. Through it, we see that great things come out of simply
thinking of functions as values.

Lesson Writing code is good. Writing code which writes code is better.

Brandon Wu Finale 08 August 2023 45 / 108

Lecture 8: Polymorphism

Before we could learn about higher-order functions, however, we needed to have a
more expressive type system, to talk about functions of potentially arbitrary type.

Staging2 that lecture was the idea of polymorphism, which expanded our
vocabulary of types to include type variables like ’a, ’b, and ’c, which allowed us
to talk about types which may be instantiated at more specific type.

This ended up giving us a vast amount of flexibility, by allowing us to write generic
functions that can be used a type-safe way, by merely varying the type with the
context of its use.

We also saw that we could execute typing traces by collecting constraints on
arguments to functions, which are given an initial, unrestricted type variable, and
then coming up with its most general type.

2haha
Brandon Wu Finale 08 August 2023 47 / 108

Lecture 8: Polymorphism

int * real

. . .

bool * ’b int list unit list unit tree int tree

. . . ’a * ’b ’a list ’a tree . . .

’a

Lesson More advanced type structure leads to concrete benefits in code. In other
words, types guide structure.

Brandon Wu Finale 08 August 2023 48 / 108

Lecture 7: Sorting and Parallelism

Back at this point in the course, we were more concerned with the mathematics and
formal parts of analyzing our code.

We learned about the tree method, which allows us to solve recurrences that make
more than one "recursive call" per level. We think of the tree method as simply
inducing a "call tree" which denotes all of the calls being made by the recursive
function, annotated with the size of the input and the nonrecursive work at each
node.

This ended up being a pivotal tool in analyzing such recursive functions, which
came out of simply thinking about how we would sum the nonrecursive work at
each level of the call tree, and then applying some simple mathematical facts.

Brandon Wu Finale 08 August 2023 50 / 108

Lecture 7: Sorting and Parallelism

For instance, we might draw a call tree labeled with the size of each node for the
recurrence where eachh W (n) term expands to contain 2W (n):

n

n
2

n
2

n
4

n
4

n
4

n
4

0 0 0 0 0 0. . .

.

Brandon Wu Finale 08 August 2023 51 / 108

Lecture 7: Sorting and Parallelism

Or, for a specific example, we might also do this for the inord function:
Winord(n) = c1 +W@(

n

2
) + 2 ·Winord(

n

2
)

n | c2 · n2

n
2 | c2 ·

n
4

n
2 | c2 ·

n
4

n
4 | c2 ·

n
8

n
4 | c2 ·

n
8

n
4 | c2 ·

n
8

n
4 | c2 ·

n
8

0 | c0 0 | c0 0 | c0 0 | c0 0 | c0 0 | c0

= 20 · c2 · n2 = c2 · n2

= 21 · c2 · n4 = c2 · n2

= 22 · c2 · n8 = c2 · n2

= n
2 · c0 = c0 · n2. . .

.

Brandon Wu Finale 08 August 2023 52 / 108

Lecture 7: Sorting and Parallelism

We then learned about span, the idea of the parallel cost of our code, where we
assume that we have an infinite number of processors.

Due to intrinsic data dependencies in code, having infinitely many processors
doesn’t necessarily solve all our problems, but it means that we can achieve a
smaller cost bound for certain kinds of problems. This is because we take the max
over certain parallelizable operations, rather than sequentially taking the sum.

We saw this in a use case for merge sort, where we could achieve a O(log n) span
via parallelism, which also admitted an extremely simple implementation.

Brandon Wu Finale 08 August 2023 53 / 108

Lecture 7: Sorting and Parallelism

fun split ([] : int list) : int list * int list = []
| split [x] = [x]
| split (x::y::xs) =

let
val (A, B) = split xs

in
(x::A, y::B)

end

fun merge ([] : int list , R : int list) : int list = R
| merge (L, []) = L
| merge (x::xs , y::ys) =

if x < y then
x :: merge (xs , y::ys)

else
y :: merge (x::xs , ys)

fun msort ([] : int list) : int list = []
| msort [x] = [x]
| msort L =

let
val (A, B) = split L

in
merge (msort A, msort B)

end

Lesson Complicated things admit a simple recursive implementation, which also
gives way to a simple recursive mathematical analysis.

Brandon Wu Finale 08 August 2023 54 / 108

Lecture 6: Asymptotic Analysis

But before we could learn about parallel complexity, we learned about generally
ascertaining the mathematical run-time of some function.

We learned how to do this by writing a recurrence for the abstract units of cost
incurred by a given recursive function. We generally had to write our recurrences in
terms of some notion of size of the input. For instance, the treesum function:

fun treesum Empty = 0
| treesum (Node (L, x, R)) = treesum L + x + treesum R

Brandon Wu Finale 08 August 2023 56 / 108

Lecture 6: Asymptotic Analysis

This ends up producing the recurrence, in terms of the number of nodes of the tree
n,

Wtreesum(0) = c0

Wtreesum(n) = Wtreesum(nl) + c1 +Wtreesum(nr)

where nl and nr are the number of nodes in the left and right subtrees, respectively.

Lesson Mathematical analysis can make even the most convoluted of things
understandable.

Brandon Wu Finale 08 August 2023 57 / 108

Lecture 5: Trees

Here, we learned about trees and other custom datatype declarations, called
algebraic datatypes.

We saw that structural induction could be carried out on any arbitrary recursive
datatype, even including things which did not look like lists or induction!

Our previous view of induction was a narrow one, but we would later learn that
induction is more of a spectrum, ranging over a wide variety of types and data
structures.

Brandon Wu Finale 08 August 2023 59 / 108

Lecture 5: Trees

In particular, we found that when inducting on a non-traditional structure, like a tree,
the proof follows the code. If a constructor has two recursive sub-components
(such as Node), then the proof gets two inductive hypotheses.

Writing code is like writing a proof. Decouple the two in your mind when writing
code that is meant to be correct – the process of writing the code should be akin to
proving that it is correct.

Lesson An impoverished view of programming fits problems to a small set of base
types. A rich view of programming fits types to problems.

Brandon Wu Finale 08 August 2023 60 / 108

Lecture 4: Structural Induction and Tail Recursion

Structural induction was taught as an upgrade of normal induction, where the
structure of a list could be observed as similar to the structure of the natural
numbers.

Just like how we had n and n+ 1, we drew an analogy to the structure of a list as xs
and x::xs.

The idea of parse, don’t validate was introduced, which consists of expressing
your information through types when possible, rather than flattening it down to
something as simple and without depth as a boolean. We saw this in the translation
of the function take :

Brandon Wu Finale 08 August 2023 62 / 108

Lecture 4: Structural Induction and Tail Recursion

fun take (n : int , L : int list) : int list =
if isEmpty L orelse n = 0 then

[]
else

let
val x = hd L
val xs = tl L

in
x :: take (n - 1, xs)

end

fun take (n : int , L : int list) : int list =
case (n, L) of

(0, _) => []
| (_, []) => []
| (_, x::xs) => x :: take (n - 1, xs)

Brandon Wu Finale 08 August 2023 63 / 108

Lecture 4: Structural Induction and Tail Recursion

Here, we also started learning about the importance of totality in proofs. We
learned about the necessity of totality as a tool to get at valuability, so that we
could step through code that relied on some form of eager evaluation.

totality citation valuability of e
ability to use theorem
which
relies on e being valuable

Lesson Parse, don’t validate! Express your data through types when you can.

Brandon Wu Finale 08 August 2023 64 / 108

Lecture 3: Induction and Recursion

But before we could get to the idea of structural induction, we first had to talk about
normal induction on the natural numbers.
We see now that induction on the natural numbers can be thought of as just an
instance of structural induction on the following datatype:

datatype nat = Zero | Succ of nat

When it comes down to it, induction should be hard-wired into your brain. Base
case, induction hypothesis, inductive step, repeat.
We also learned about the "recursive leap of faith" method for writing a recursive
function, which simply requires a leap of faith that your function works, to write a
function which does the right thing.
Lesson We call the method of solving an infinite amount of problems in finite
space, "induction", or "recursion", and they are the same thing.

Brandon Wu Finale 08 August 2023 66 / 108

Lecture 2: Equivalence, Binding, and Scope

Back during this lecture, we were still getting a hold of the basics of SML!
We learned about extensional equivalence, which turned out to be a pivotal notion
in our understanding of programs, and of our understanding of how to write correct
programs.
To facilitate this idea, we introduced the concept of binding, which differs from
other programming languages which have assignment, in that the value of a
variable never changes, when it is bound. That variable can only be shadowed with
a different, unrelated binding that shares the same name.
This ultimately introduced the idea of immutability, or simply not allowing values to
mutate wildly in a single context. This means that code reads the same as math –
values are values.
Lesson Binding is not assignment! We can gain many benefits from simply
adopting an immutable style.

Brandon Wu Finale 08 August 2023 68 / 108

Lecture 1: Prologue

And then, at the start of everything, we had our first lecture.

This lecture introduced the Standard ML language, it introduced the idea of having
a strong type discipline, and it made a few promises.

On the very first day, we set out with an idea of what we wanted programming to
be. We also laid out our Three Theses, which have appeared so far throughout the
slides, and throughout the course.

Lesson Functional programming is an improvement on our ability to program. It is a
refinement on our ability to communicate, as programmers.

How have we kept on on those promises, and foreshadowings?

Brandon Wu Finale 08 August 2023 70 / 108

2 - Course Themes

What is Programming?

On the first day, I posed this question to you. What is programming? What is good
programming? What should good programming be?

Let’s revisit those answers.

Programming should be:
• descriptive
• modular
• maintainable

Brandon Wu Finale 08 August 2023 72 / 108

Programming Should Be: Descriptive

Programming should be descriptive.

At this point in the course, we’ve seen many examples of this. Writing signatures
that describe the interfaces of our code is one way of making our code more
descriptive.

Giving our code concrete, well-specified invariants that we can think of, when
programming is another way of writing descriptive code.

More generally, having powerful language constructs like higher-order functions,
parametric polymorphism, and algebraic datatypes makes our programming
incredibly expressive, and able to describe a wide array of problems.

Brandon Wu Finale 08 August 2023 73 / 108

Programming Should Be: Modular

Programming should be modular.

What better way to validate this claim than our discussion of literal modules? We
saw that modules can be used to make composable software, or software that can
be defined in terms of other, well-specified software components.

If we had a library for IntSet , refactoring the internal implementation is incredibly
easy, when we hide the details via opaque ascription. We saw that outside callers
literally cannot depend on things which are hidden behind the interface, making for
modular code.

A strong typing discipline lends itself to modular code as well. Each expression and
each variable has its own type, which gives it well-specified semantics and a
well-specified way to interact with other parts of a modular codebase.

Brandon Wu Finale 08 August 2023 74 / 108

Programming Should Be: Maintainable

Programming should be maintainable.

More generally, the principle of extensional equivalence, or as I call it, the
refactoring lemma, means we can always swap equivalent code for equivalent code.
This is enormously powerful when it comes to refactoring and maintaining code.

More generally, a strong typing discipline means that maintaining code is less likely
to run into errors. You can’t accidentally swap an expression of type int for one of
type int tree, at least not easily.

Functional code is not just nice to look at – terser, more understandable code will
ultimately lead to more maintainability. You cannot maintain code that you do not
understand.

Brandon Wu Finale 08 August 2023 75 / 108

Three Theses

What about the three theses that we learned?

Those were:
• Recursive Problems, Recursive Solutions
• Programmatic Thinking is Mathematical Thinking
• Types Guide Structure

Brandon Wu Finale 08 August 2023 76 / 108

Three Theses: Recursive Problems, Recursive Solutions

Recursive Problems, Recursive Solutions is about not letting recursion be the
bogeyman.

We’ve dealt with recursion all semester – by this point, we’re pros at it. Recursion is
a technique that isn’t something to be feared or excluded, it’s a fundamental
technique that is applicable in many scenarios.

Through proper command of thinking with specifications and thinking with
invariants, recursion becomes second nature. Ultimately, the recursive nature of
linked lists and tree-like structures benefits a recursive approach.

Brandon Wu Finale 08 August 2023 77 / 108

Three Theses: Programmatic Thinking is Mathematical Thinking

Programmatic Thinking is Mathematical Thinking is about the fact that computer
scientists were mathematicians first.

Before we can write any serious code, we have to be able to think about it in
analytical code. Before we can write code which solves problems, we need to adopt
a problem-solving mindset. It just so happens that math is the language of stating
and solving problems.

Work and span, induction, extensional equivalence, and adopting formal
mathematical specifications are all different ways that math shows up in our code.
Embrace it – it can only make your ability to understand and solve problems better.

Brandon Wu Finale 08 August 2023 78 / 108

Three Theses: Types Guide Structure

Types Guide Structure is about letting types dictate your thinking.

Types are the language of programs, and the blueprints that software architectures
are built upon. The exchange, construction, destruction, and interplay of data are all
processes that are codified via types.

We saw how powerful concepts like currying, HOFs, CPS, laziness, and
polymorphism can come out of simply adjusting our type structure slightly. Seen in
this way, we truly do let types guide the structure of our programs, and produce
better code for it.

Brandon Wu Finale 08 August 2023 79 / 108

Sayings

In addition to those, however, over the course of the semester I isolated some of
the common sayings or idioms that tended to crop up during each lesson.

Some lessons are planned. Others must be discovered. These ones are the latter.

• Be Clever by Being Dumb
• Self-Defence Against Yourself
• We Are in the Business of Writing Correct Code
• Do It Better

Brandon Wu Finale 08 August 2023 80 / 108

Sayings: Be Clever by Being Dumb

I don’t think I necessarily ever said this one out loud, but I was thinking it.

Some people think I like functional programming because I am smart. These people
are incredibly wrong. I like functional programming because I am extremely prone to
stupid mistakes, and without good code to support me, I would never get anything
done.

At this point in the course, we’ve discussed the type-checker, and all the ways that
it serves as both our best friend and our worst enemy. I am squarely in the "best
friend" camp, because without the typechecker at my side 90% of the code I write
would be nonsense.

Brandon Wu Finale 08 August 2023 81 / 108

Sayings: Be Clever by Being Dumb

Learning how to program (or computer science in general) is a massive rush of
learning new skills and techniques, fancy names, and cool buzzwords that seem to
clue you in on a brand new world.

In my experience, learning how to program well has entailed learning how to cut
back on that instinctive desire to do things in a "cool" or "clever" way.

Cool is cool. Clever is clever. But clever is not maintainable. Nobody wants to read
your "clever" code which requires five different assumptions to understand.

Write code which speaks for itself. Write code that is simple and expressive, and
gets the job done in the least confusing way possible. To me, that is what functional
programming stands for.

Brandon Wu Finale 08 August 2023 82 / 108

Sayings: Self-Defence Against Yourself

This has been a class on learning how to program well.

The main way that we can learn how to program well is to learn how to live with
ourselves, as programmers. We are often our own worst enemies, writing code
which is inunderstandable merely hours later, or leaving footguns in our code that
future versions of ourself have to deal with.

To that end, the first step in learning to program well is to learn how to defend
yourself against yourself. Writing safe, correct code requires that you be able to
prevent yourself from making mistakes, because every programmer makes
mistakes.

So let’s prevent type errors, let’s prevent dynamic errors instead of static ones, let’s
prevent ourselves from having to write messy code which we will have to deal with
later. Making mistakes is OK, let’s just minimize the chances.

Brandon Wu Finale 08 August 2023 83 / 108

Sayings: We Are in the Business of Writing Correct Code

Something I have said multiple times is that we are not in the business of writing
code, we are in the business of writing correct code.

Some people are in the business of writing code. They look for code output and
productivity measured in terms of silly metrics that have nothing to do with actual
impact.

That’s cool, but we’re here to write correct code. We’re here to do things right.
Because nobody wants software which doesn’t work. We want to make sure that
our code is right, so we have things like extensional equivalence, reasoning via
specification, and type safety to guide us towards that.

Brandon Wu Finale 08 August 2023 84 / 108

Sayings: Do It Better

Do it, but do it better. Or, alternatively, we can do better.

Self-improvement is a process of first being open to improvement. Knowing how to
program is good, but a theme throughout this course has been learning the
numerous ways that we can improve our ability to program.

Knowing how to do something is cool, but you need to always be on the lookout for
how to improve, if you want to really be good at something.

Instead of rewriting functions over and over, we can use HOFs to encapsulate
common designs. Instead of running into errors at runtime, we can catch them
statically. Instead of having to use redundant representations of types, we can
design our own to fit our problem.

There’s always better.

Brandon Wu Finale 08 August 2023 85 / 108

Functions Are

Before I go, I also wanted to give you a parting note on tribalism.

I vary back and forth on this, but the core idea is that throughout this course, we
have been emphasizing this idea that "Functions are values", which is meant to
signal the importance of being able to think of functions as themselves first-class
objects which can be manipulated like any other.

This is in contrast to our rival class, which espouses "Functions are pointers". I don’t
need to tell all of you that this is a point of contention within the school, between
these two beliefs.

My core parting gift to all of you is simply that Functions are.

As in, it doesn’t matter.

Brandon Wu Finale 08 August 2023 86 / 108

On Tribalism

I can, when properly baited into it, get as heated as anyone else on the idea of
"functional programming vs imperative programming" or "functions are pointers vs
functions are values". This is usually just for comedic effect.

In truth, it doesn’t matter. These things are contextual. For our purposes, for
teaching you this brand new thing called functional programming, of course I’m
going to say that functions are values. It’s a core belief of ours.

But this is just one context out of the many that people might find themselves in.
This is a note on empathy.

Brandon Wu Finale 08 August 2023 87 / 108

On Empathy

It’s not OK to language bash. It’s not OK to judge someone based on the paradigm
they employ, or the way that they like to program, or whether they prefer tabs
versus spaces.

SML is a tool, just like any other. There are use cases where it is good, and there are
use cases where it is not so good. That’s not at odds with my belief that functional
programming is of the utmost importance to you. I think that it is pivotal that you
obtain the learnings that you have so far in the course, but it doesn’t imply being a
jerk about it.

Functional programming is not a static, well-defined thing. So it’s not worth wasting
the energy compartmentalizing the world into things that are in the in-group or not.
The world could just stand to be a little more functional.

Brandon Wu Finale 08 August 2023 88 / 108

On Functional Programming

Functional programming is exactly as I said on the first day. It’s a mindset, a habit, a
style. All programming is, or can be, functional, it’s just a matter of whether you
think about it explicitly or not.

Safety, simplicity, expressivity. I think these are some of the guiding three tenets
behind the things which we have learned this semester.

On the first day, I promised that functional programming was a refinement on our
way to program. I still steadfastly believe that. I hope that, now, you see it too.

Programing is just something linguistic. Functional programming gives us the
outlook and tools necessary to make that communication better.

Brandon Wu Finale 08 August 2023 89 / 108

https://tvtropes.org/pmwiki/pmwiki.php/Main/ExactlyWhatItSaysOnTheTin

On Functional Programming

I’ll borrow another idea here when I say that code is art.

Code can be beautiful.

Code can explain an idea.

Code can change how you think.

This is the first chapter of the rest of your life. Now, you have the knowledge that
you need to succeed, and you can never go back.

Brandon Wu Finale 08 August 2023 90 / 108

3 - Saying Goodbye

Acknowledgements

I have many people I must acknowledge.

Teaching is not a one-person job. It’s the combined efforts of myself, the rest of the
course staff, and, by proxy, everyone who has ever taught me how to teach. Many
people have shown up in this class, whether you knew so or not, even without
showing their faces.

The list is too long for me to possibly state, but I can try anyways.

Brandon Wu Finale 08 August 2023 92 / 108

Acknowledgements

I TA’d this class for many years before getting the privilege to return as an instructor.
Through years of 150, I met friends, mentors, and lifelong connections.
These people influence me in every second that I teach, in ways both large and
small. I have some specific ones in mind, but those people know who they are.

Aditi · Brandyn · David · Emma · George · Hannah · Harrison · Helen L. · Henry ·
Isabelle · Michael Zhang · Julia G. · Kalvin · Kai · Mckenna · Minji L. · Miranda ·

Matthew · Nikhita · Samarth · Shyam · Sue · Tim · Ashwin · Ariel · Brian · Disha · Ethan
· Eunice · Gabriel · Isabel · Jacob · Kaz · Kevin · Keshav · Minji K. · Nathan · Naomi ·

Alexander · Siddharth G. · Mia · Avery · Agam · Cam · Eshita · Lili · Rahjshiba · Soumil
· Siva · Cooper · James · Len · Leah · Abhi · Arthi · Andrew · Eric · Jon · Justin · Keiffer
· Megha · Mason · Christina · Ryoha · Ryan · Runming · Samiksha · Siddharth P. ·

Stefan · Steven · Suhas · Surabhi · Thea ·Will · Advait · Ananya · Allen · Anna · Ayush
· Brandon · Eric · Ekemini · Juhi · Jimmy · Julia S. · Jonathan · Laura · Megan ·

Michelle · Nancy · Nicole · Pratik · Rachel · Sanjana · Dhruti · Sam · Sonya · Tarun ·
Xinyu · Yosef · Helen H. · Zach · Caroline · Deya · Michael Zhou · Stephen

Brandon Wu Finale 08 August 2023 93 / 108

Acknowledgements

My TAs, for caring, for persevering, and for always having the interests of the
students at heart.

The connections, mentors, and lifelong friends that I have made over the years of
teaching this class, some of which I left behind so that I could come here.

My friends who supported and kept me sane throughout this summer.

Dilsun Kaynar, for her pivotal support in running this course.

Semgrep, for not just supporting my decision in coming here to teach, but for going
above and beyond in their sponsorship of the course.

Brandon Wu Finale 08 August 2023 94 / 108

Acknowledgements

Michael Erdmann, for imparting to me a modicum of his compassion.

Bob Harper, for showing me the power of passion.

Jacob Neumann, without which these slides would not exist.

Anil Ada, for the alternate grading schemes and drawing boxes on exams.

Ryan O’Donnell, for showing me how to start off a lecture with style.

Mor Harchol-Balter, for frequent handing out of candy during live lecture.

Suhas Kotha, for showing me the power of Hi-Chews.

Brian Railing, for the importance of in-class exercises in student learning.

Pat Virtue, for showing me it is possible to consider the individual.

Brandon Wu Finale 08 August 2023 95 / 108

Saying Goodbye

I hate goodbyes.

I was never good at saying goodbye.

I spent days upon days figuring out what to write for this section, and couldn’t find
the right way to describe what I was feeling.

See, the problem is that I spent a lot of time premeditating these slides. I
premeditate what I say, and the jokes that I make. But how can you possibly
premeditate something as important as this? So, you know what? I’m not going to
premeditate. I’m going to just say what I think. For once I’m going to just let myself
say something off the cuff and be actually honest with you, no tricks, no jokes.
Because my goodbye should be genuine, and unplanned, and... what are you
looking at? Fuck.

Brandon Wu Finale 08 August 2023 96 / 108

Stories

Jokes aside.

My lectures usually take the form of stories. To me, every lecture I’ve given has been
a very specific story, with lessons and tribulations and a beginning and end. I like to
think that I’ve just been telling you stories over the course of this entire semester.

But what is the story of this lecture?

This is the story of me.

Brandon Wu Finale 08 August 2023 97 / 108

Endings and Closures

This story begins with my graduation. For me, it was an ending, but not a closure.

This story ends with a closure, of my time at CMU, my time with this class, and my
time with this thing I gave my all for four years, called 150. This story ends with me.

Brandon Wu Finale 08 August 2023 98 / 108

Origins

How did I get here?
I always wanted to be a professor.
For years, my dream was to teach. It first came out of a pretty unfounded reason,
which was that my dad, and his dad, were both professors. I thought it would be
cool to be a professor.
But my senior year, I decided not to pursue a Ph.D. I decided that I could instead go
to industry, and leave academia behind me. This led me to a lot of great things,
don’t get me wrong, but something like teaching 150 ever again would be closed to
me. I made my peace with that.
Until one day, I messaged Tom Cortina, and asked him if I could teach, and
somehow ended up getting this opportunity.
So I guess another part of making it hard to say goodbye is – how do you say
goodbye to a dream? What do you do when your time comes to an end?

Brandon Wu Finale 08 August 2023 99 / 108

Themes

What is the theme of this lecture?

Something Worth Learning

But no, that doesn’t quite make sense.

Something Worth Teaching

Brandon Wu Finale 08 August 2023 100 / 108

Something Worth Teaching

But actually, no. That doesn’t make sense. The story is inconsistent.

More powerful than something worth learning is something worth teaching.
Something worth telling people about. An idea worth spreading.

But what does it mean for something to be something worth teaching? I hear stories
from some of you, telling others about the things which you have learned in this
class, but I don’t necessarily expect any of you to become teachers, or to want to
teach functional programming to others.

For me, something worth teaching is obvious. That’s my life. That’s what I care
about. I came here because 150 is something that is worth teaching to me.

Brandon Wu Finale 08 August 2023 101 / 108

Motivations

Something I wanted you to carefully consider, when writing this presentation, is
what I really want you to get out of this course. Why are we here? Why are you
taking this class?

I’m here to teach you functional programming, and ostensibly you are here to learn
functional programming. But that is not the end of the story.

Functional programming is a proxy for success. It’s a stepping stone on the way
towards that kind of goal, in some measure, but you can’t forget the original goal
that it set out to accomplish.

Why are you here?

Brandon Wu Finale 08 August 2023 102 / 108

A Social Experiment

I want to conduct a social experiment.3

Put your heads down, and think about why you are here. Think about your goals in
life, think about your dreams. It doesn’t need to be, and in fact most likely is not,
anything related to functional programming.

Think about what you really want. Caveat, it’s not allowed to be anything grades or
academic related. Nobody is born dreaming of getting good grades – it’s just a
proxy for some other goal that we truly want.

3This sentence has never ended badly.
Brandon Wu Finale 08 August 2023 103 / 108

The Proof is in the Passion

Something worth teaching means several things. For one, it means the thing which
drives you, the thing which gets you out of bed, the thing you would leave your life
behind to have the chance to do.

This is your something worth teaching. This is something that is worth it, at the end
of the day. Chances are, it’s different than mine, and that’s OK.

I hope that one day, in the future, you achieve that. And more than that, I hope that
what you’ve learned in this class somehow, in any way, helps you towards achieving
that.

Don’t be afraid to make an impact. Don’t be afraid to give your 110%, because if
there’s anything that I can teach you out of this course, it’s that passion makes the
difference. Passion makes the journey worth it.

Brandon Wu Finale 08 August 2023 104 / 108

The Proof is in the Passion

It might feel disingenuous for me to come up here and tell you to find something
worth devoting your life to, because I’m so lucky or because it’s so incomparable.
But as my eleventh grade math teacher put it when I asked him, don’t be mistaken
for a second just because I’m your instructor, that I’m smarter or more capable. I just
know more.

What I do have, and what I do feel qualified to speak on, is that I have a lot of
passion for what I do. I have passion for my work, I have a passion for life, and I
have a passion for teaching. And that’s what shines through. It’s what’s gotten me
here. And if you can find that same passion — then it will get you to where you need
to go, too.

Brandon Wu Finale 08 August 2023 105 / 108

Something Worth Teaching, Final

Something worth teaching means three things.

It represents my journey, over the past half a year, of coming here to teach, and
understanding why it was so crucial that I needed to be here, why this was the most
important thing I could have been doing.

The other meaning is for you. It’s about you finding your something worth teaching.
It’s about finding your mission, aspirations, dreams, what gets you out of bed in the
morning, and putting your all into it.

And finally, the thing thing is you. You, as a class. Because you have been
something worth teaching.

Brandon Wu Finale 08 August 2023 106 / 108

The End

No more stalling. This is the end.

This is goodbye to my time as an instructor, goodbye to CMU, and goodbye to 150.
Time to hang the jacket up.

I will probably never teach again. But that’s OK. Teaching all of you has been the
most important thing I could do, because these ideas are worth teaching. Someone
will continue after me.

I hope that this class has been something worth learning. I hope that this class has
been something worth teaching.

Brandon Wu Finale 08 August 2023 107 / 108

Thank you. From the bottom of my heart.

Please do keep in touch.

wu.brandonj@gmail.com
https://brandonspark.github.io/

@onefiftyman
LinkedIn

mailto://wu.brandonj@gmail.com
https://brandonspark.github.io/
https://twitter.com/onefiftyman
https://www.linkedin.com/in/brandon-wu-79935116b/

	Rewind
	Course Themes
	Saying Goodbye

