

Lesson Plan

1 Exceptions

2 Using Exceptions

3 Custom Exceptions

4 Exceptional Control Flow

Brandon Wu Exceptions 22 June 2023 2 / 47

Last time

Last time, we learned about continuation-passing style. We learned that we could
make our control flow even more explicit by, instead of implicitly using the return
values of recursive functions, instead passing lambda expressions (continuations)
denoting the computation to be done next to those recursive functions.

This separated concerns when it came to functions which had branching control
flow behavior, as well as allowing us to achieve clean tail-recursive code, by
drawing a distinction between writing now and remembering later.

We carried out a mechanistic process of CPS translation on various functions to
achieve this.

Brandon Wu Exceptions 22 June 2023 3 / 47

1 - Exceptions

Extensional Behaviors

Recall our definition for all the possible behaviors of an expression:
• Evaluate to a value
• Loop forever
• Raise an exception

Until now, we’ve given an intentionally bare bones treatment of exceptions. Now, it
is time to dive into exceptions in more detail.

Brandon Wu Exceptions 22 June 2023 5 / 47

An Exceptional Language

One of the first examples of expressions that we ever saw was the expression
1 div 0. This expression raises an exception, when evaluated.

Standard ML of New Jersey (64-bit) v110 .99.3 [built: Thu Jul
28 00:35:16 2022]

- 1 div 0;

uncaught exception Div [divide by zero]
raised at: stdIn :1.4 -1.7

Exceptions are baked into many common processes in SML. In fact, there are three
very essential ones we will discuss today!

Brandon Wu Exceptions 22 June 2023 6 / 47

Kinds of Exceptions

We see exceptions like Div, which are specific to certain functions.

There are more fundamental exceptions which are raised upon given patterns of
behaviors in SML. These exceptions are:

1 Match , which is raised when a nonexhaustive match receives an input that fails
to match any of its cases

2 Bind, which is raised when a val binding tries to bind something matching a
particular pattern, and receives one which does not match

Brandon Wu Exceptions 22 June 2023 7 / 47

The Match Exception

If you were to write the following lambda expression in SML:
val f = fn 1 => 2

you would receive the following warning:
stdIn :1.10 -1.19 Warning: match nonexhaustive

1 => ...

What happened? We didn’t specify what would happen on all possible inputs! The
function is only defined on the input 1.

Brandon Wu Exceptions 22 June 2023 8 / 47

The Match Exception

This is perfectly legal, and SML will let you proceed, but upon being given an invalid
input:

- f 2;

uncaught exception Match [nonexhaustive match failure]
raised at: stdIn :1.19

we get an exception Match .

In essence, you could think of all such nonexhaustive cases (and this function, in
particular) as being defined implicitly as

fn 1 => 2 | _ => raise Match

Brandon Wu Exceptions 22 June 2023 9 / 47

The Bind Exception

An archaic way of writing test cases is to try to bind an expression to a constant
pattern:

val 6 = fact 3

This will proceed without a hitch. If the pattern were to not match the returned
value, however:

- val 5 = fact 3;
stdIn :3.5 -3.15 Warning: binding not exhaustive

5 = ...

uncaught exception Bind [nonexhaustive binding failure]
raised at: stdIn :3.5 -3.15

we would now get an exception Bind being raised.

Brandon Wu Exceptions 22 June 2023 10 / 47

Why Exceptions?

We see that Bind and Match are more consequences of programming in SML, and
aren’t specific to any functions’ logic.

For exceptions like Div, we use them to escape from having to return a value, when
given some input. Instead of returning a value, we simply abort execution.

At this point in the semester, we have seen functions which return optional values,
which might beg the question – why use exceptions in the first place?

Brandon Wu Exceptions 22 June 2023 11 / 47

Exceptions versus Options

We see that for any function which raises exceptions, we can produce an equivalent
function which returns an optional value, which instead returns NONE in any
exceptional cases:

infix safeDiv

fun n safeDiv 0 = NONE
| n safeDiv d = SOME (n div d)

Why use exceptions at all, then, when they might cause a program to unexpectedly
crash?

Brandon Wu Exceptions 22 June 2023 12 / 47

A Difference in Specification

Let’s take a look at the following specifications:

div : int * int -> int
REQUIRES: n > 0
ENSURES: div (n, d) evaluates to the floor of n divided by d

safeDiv : int * int -> int option
REQUIRES: true
ENSURES: safeDiv (n, d) evaluates to NONE if d is 0, and SOME (n div 0)
otherwise

They look rather similar! The difference is that safeDiv has moved the
precondition into the type of its return value.

Brandon Wu Exceptions 22 June 2023 13 / 47

Composing with Preconditions versus Types Types Guide Structure

In practice, safeDiv turns out to be the safer option, to no surprise.

Forcing the caller to handle the exceptional case by handling the NONE is a
type-level distinction, that causes code which does not acknowledge the possible
failure to not compile.

This is a really strong enforcement, and leads to code which cannot fail to address
the failure!

Brandon Wu Exceptions 22 June 2023 14 / 47

An Exceptional Calculation

Occasionally, however, this can prove to be more of a burden than a safety net.

For instance, we might have occasions where we know for sure that an exceptional
case cannot be reached. Suppose we are implementing the following function to
collect the average grade of every student in 150:

fun averageGrade (grades : int list) : int =
(List.foldr op+ 0 grades)
div
(List.length grades)

Suppose that we wanted to be rid of exceptions, however:

Brandon Wu Exceptions 22 June 2023 15 / 47

An Optional Calculation

fun averageGrades Safe (grades : int list) : int option =
(List.foldr op+ 0 grades)
safeDiv
(List.length grades)

Now, it is the responsibility of the caller to handle the NONE case!

The only sensible thing to do (if not raising an exception) is often just to propagate
the option , and cause all of the dependencies to also need to return optional
values.

This quickly gets messy.

Brandon Wu Exceptions 22 June 2023 16 / 47

Implicit Preconditions

The thing is, this entire mess was never really necessary.

Unless something is deeply wrong, it’s a fairly safe bet that the database containing
grade data for the entire class isn’t empty.1

At a certain point, we need to be able to trust the data that we input. Although there
is the possibility of a failure case, in realistic situations, quite often there is no
reason to believe that they are possible.

So in this case, we might prefer the exceptional behavior, because it leads to
cleaner code in a hypothetically impossible case. We have an implicit precondition
on our inputs.

1If it is, I have bigger problems.
Brandon Wu Exceptions 22 June 2023 17 / 47

Footguns

This is exactly the logic that has caused a million and one bugs in production code
before.

This is why judicious use of exceptions is important! In some cases, it really is OK to
raise an exception in a failure case, depending on how bad the failure case is.

It might seem that an unrecoverable error that completely crashes the running
process might be worth no amount of code golfing. Luckily, SML does have ways of
dealing with raised exceptions.

Brandon Wu Exceptions 22 June 2023 18 / 47

2 - Using Exceptions

Raising Exceptions

We can raise exceptions ourselves, as you may have seen many times before.
What expressions are we allowed to raise? SML has a type of exception values,
which is called exn. This may stand for "exception name".
So for instance, valid constant constructors of type exn include:
• Match
• Bind
• Div

but not Fail : string -> exn, which takes in an additional argument of type
string before it can be raised.
We use the syntax raise e to raise exception e, given that e : exn.
Note raise is not a function, it merely looks like one. So List.map raise is not
a valid expression.

Brandon Wu Exceptions 22 June 2023 20 / 47

Typing raise

We said that raise e is an expression which raises the expression e. To evaluate,
however, it needs to have a type, but what should its type be?

Given that it never returns a value, it doesn’t actually matter. For our purposes, it’s
important to use that an expression of type t returns a value of type t, if it returns
at all.

Since raise never returns, we are free to give it any type. So raise e has type ’a,
in that it can take on any type.

Brandon Wu Exceptions 22 June 2023 21 / 47

Handling Exceptions

SML provides a language construct called handle . Here’s an example of how we
might use it, instead:

fun reportGrades (grades : (string * int) list) =
(let

val grades = List.map snd records
in

"The average was " ^ Int.toString (averageGrade grades)
end)
handle Div => "ERROR: No grades found"

In this case, we use handle to evaluate the body of the function to an error string in
the case where Div is raised. Otherwise, we evaluate normally.

Brandon Wu Exceptions 22 June 2023 22 / 47

Handling, Generally

A handle expression has the following behaviors:

The expression
e handle p1 => e1 | ... | pn => en

has type t only if e : t, e1 : t, ..., en : t.
In addition, p1, ..., pn must all be patterns of type exn.

The behavior of the above handle expression is that:
• If the expression e never raises an exception, then it evaluates to e
• If the expression e raises exception ex, then it matches to the first pi that

matches ex
• If the exception e raises matches none of the handle cases, it raises that

exception again

Brandon Wu Exceptions 22 June 2023 23 / 47

A handle Example

Here are some examples of handle expressions, and how they evaluate:

• raise Div raises exception Div
• (raise Div) handle Div => 2 ↪→ 2
• (raise Div) handle Bind => 2 raises exception Div
• (raise Div) handle Bind => 1 | Div => 2 ↪→ 2
• 2 handle Div => 3 ↪→ 3

Brandon Wu Exceptions 22 June 2023 24 / 47

Nested Exception Raising Recursive Problems, Recursive Solutions

The great strength of handle is that it can be used to handle exceptions from
anywhere inside of the enclosing expression.

Key For non handle expressions, if a sub-expression raises an exception, then
that expression does too.

This means that exceptions propagate outwards from where they were initially
raised. This process continues until they reach the nearest enclosing handler, at
which point they are possibly handled, or keep going.

This means that, essentially, exceptions allow a program to stop doing what it is
doing, and resume control flow at an earlier point in time.

Brandon Wu Exceptions 22 June 2023 25 / 47

Nonlocal Control Flow

So in the expression 1 + (3 * (4 div 0)) handle Div => 5:

The expression 4 div 0 raises Div.
The sub-expression 4 div 0 of 3 * (4 div 0) raises Div, so 3 * (4 div 0)
raises it too.
The sub-expression 3 * (4 div 0) of 1 + (3 * (4 div 0)) raises Div, so
1 + (3 * (4 div 0)) raises it too.
The sub-expression 1 + (3 * (4 div 0)) of
1 + (3 * (4 div 0)) handle Div => 5 raises Div. Since this entire
expression is a handle , we match Div to the handler’s first case, and evaluate to 5.

This is an example of nonlocal control flow, because when evaluating the
expression 1 + (3 * (4 div 0)), our handle expression lets us skip directly
from a deeply nested div call directly back up to the handled expression!

Brandon Wu Exceptions 22 June 2023 26 / 47

Exceptions and Options

Before, we saw there was a relationship between functions which returned options,
and functions who instead raised exceptions.

Let’s generalize. Suppose we have a function f : t1 -> t2, which is possibly
exception-raising. Then, we can define f_opt with the following spec:

f_opt : t1 -> t2 option
REQUIRES: true
ENSURES: For all values x : t1:

f_opt x ∼=

SOME res, if f x ↪→ res
NONE, if f x raises an exception
loops forever, otherwise

Brandon Wu Exceptions 22 June 2023 27 / 47

Exceptions and Options

Using handle , we can quickly go between these functions. Given f, as previously
described, we define f_opt : t1 -> t2 as:

fun f_opt x = (SOME (f x)) handle _ => NONE

Check your understanding Why did we have to surround f x with SOME? What
would happen to the type if we didn’t?

Warning It is a really bad idea to use _ in a handle clause. This is because you
might swallow up any possible exception, rather than just the one you are
interested in. This could obfuscate certain errors.

If you know the precise exception that f raises, it’s better to case on that here.

Brandon Wu Exceptions 22 June 2023 28 / 47

An Exceptional Example

Let’s look at a particular example. Suppose we have the following function:

fun f x =
("Divided to " ^ Int.toString x)
handle Div => "Divided by zero!"

Check your understanding Is it true that f (1 div 0) ∼= "Divided by zero!"?

Answer: No, it is not! SML is an eagerly evaluated language, so the exception Div
is raised before we enter the body of f. The handler never applies, because the
handler is only within the definition of f.

Brandon Wu Exceptions 22 June 2023 29 / 47

Exceptions are a Side Effect

Exceptions are what we call a side effect.

Def A side effect is an effect of an expression which is not just computing a value.
For instance, reading from a file, printing to the console, or raising an exception.2

Side effects tend to make our definitions of equivalence fuzzy. For instance, with
exceptions, we cannot freely exchange the order of unrelated val bindings without
possibly changing the behavior of the program:

val _ = raise Bind
val _ = raise Match

These two bindings are unrelated, but the order in which they happen matters! This
can make mathematical reasoning annoying.

2One can also consider infinite loops a side effect.
Brandon Wu Exceptions 22 June 2023 30 / 47

Equivalence and Addition Programmatic Thinking is Sometimes Not Mathematical Thinking

Recall that our definition of extensional equivalence maintains that e1 : t and
e2 : t are only extensionally equivalent if they evaluate to equivalent values, both
loop forever, or both raise the same exception.

A fun fact that goes along with that is that, in a world with exceptions, it is no longer
true that e1 + e2 ∼= e2 + e1, where e1, e2 are both expressions of type int.

This is because (raise Div) + (raise Bind) raises Div, but
(raise Bind) + (raise Div) raises Bind! This is another reason why
valuability (and by extension, totality) is important.

Brandon Wu Exceptions 22 June 2023 31 / 47

3 - Custom Exceptions

An Exceptional fact

Suppose we wanted to revisit our old friend, fact .
fun fact 0 = 1

| fact n = n * fact (n - 1)

We know that fact loops forever on negative inputs. Generally, this is undesirable,
because it can be difficult to discern an infinite loop from a program which is just
taking a really long time.

Let’s define fact_exn3, which raises an exception on negative inputs!

...But what exception should we raise?

3Labeling functions which possibly raise an exception with the suffix _exn is a common practice in
the OCaml language, and in my opinion, a really good practice.

Brandon Wu Exceptions 22 June 2023 33 / 47

Raising an Arbitrary Exception

We could define the following:
fun fact_exn 0 = 1

| fact_exn n =
if n < 0 then

raise Bind
else

n * fact_exn (n - 1)

But this isn’t actually a case where we failed to produce a binding, which is what the
Bind exception is supposed to be for. If we handled Bind elsewhere outside callers
to this function, we might end up in a handler we didn’t mean to!

We could raise Fail "negative number", but this becomes problematic to
pattern match on. How can we do better?

Brandon Wu Exceptions 22 June 2023 34 / 47

An Extensible Type Types Guide Structure

It turns out, we can! exn is a special type, because while it can be thought of as the
datatype declared via

datatype exn = Match | Bind | Div | Fail of string | ...

it’s actually more special than that! exn is the only extensible type.4

Def An extensible type is one where constructors can be added to it after the type
is declared. exn is the only example of this in Standard ML.

We can write something like
exception Fact

to declare a new constructor Fact : exn, for the exn type.

4In fact, some say that exn stands for extensible. Some people also say this is gaslighting, and it
doesn’t stand for that all, though.

Brandon Wu Exceptions 22 June 2023 35 / 47

Raising a Custom Exception

So now, we can define fact_exn better:
exception Fact

fun fact_exn 0 = 1
| fact_exn n =

if n < 0 then
raise Fact

else
n * fact_exn (n - 1)

After this, the expression
(SOME (fact_exn (∼1))) handle Fact => NONE

will evaluate to NONE .
Brandon Wu Exceptions 22 June 2023 36 / 47

Exceptions of Arguments

We can also define exceptions which take in arguments:
exception Error of string

fun runProcess (f : unit -> string) : string =
("OUTPUT: " ^ f ())
handle Error s => ("ERROR: " ^ s)

such that runProcess (fn () => "foo") ↪→ "OUTPUT: foo"

and runProcess (fn () => raise Error "bad") ↪→ "ERROR: bad"

Brandon Wu Exceptions 22 June 2023 37 / 47

4 - Exceptional Control Flow

Implicit Control Flow

Exceptions are useful for writing code when we want to quickly be able to escape
from some error case!

We can also use them for their control-flow abilities. We saw in the last lecture how
we can use continuations to make our control flow explicit, by passing around
instructions on what to do in certain cases.

With exceptions, we can go the other way and make our control flow even more
implicit, by relying on casing on exceptions are raised.

Brandon Wu Exceptions 22 June 2023 39 / 47

Exceptional Control Flow

For instance, let’s do the search function using exceptions:

searchEHS : (’a -> bool) -> ’a tree -> ’a
REQUIRES: p is total
ENSURES: searchEHS p T raises NotFound if there is no element in T that
satisfies p. Otherwise, it returns the first element in its preorder traversal which
does.

Brandon Wu Exceptions 22 June 2023 40 / 47

Exceptional Control Flow

exception NotFound

fun searchEHS p Empty = raise NotFound
| searchEHS p (Node (L, x, R)) =

if p x then
x

else
(searchEHS p L) handle NotFound => searchEHS p R

In this case, we handle the NotFound exception, which should be raised by our
specification only in the case where we fail to find a satisfying element in that
subtree.

This is known as exception-handling style.

Brandon Wu Exceptions 22 June 2023 41 / 47

EHS versus CPS

We can compare with the implementation of search using CPS we saw last lecture:

fun searchCPS p Empty sc fc = fc ()
| searchCPS p (Node (L, x, R)) sc fc =

if p x then
sc x

else
searchCPS p L

(fn res => sc res)
(fn () => searchCPS p R sc fc)’

We see that the fc cases correspond to our raising of the NotFound exception, and
the success continuation corresponds simply to returning a value.

Brandon Wu Exceptions 22 June 2023 42 / 47

On Exceptional Control Flow

Implicit control flow is generally a bad thing. While functions written in CPS can be
also written with exceptions, there is little reason to do this in actual code.

This is largely because exceptions are a nightmare to debug. Nonlocal control flow
transfer introduces precisely the problem that goto statements had, which is a lack
of transparency!

Business logic is generally better done without exceptions, but exceptions are great
for error cases, when the program just needs to find a way to exit gracefully.

Brandon Wu Exceptions 22 June 2023 43 / 47

Exception Handling On Steroids

We can go even more crazy with it. We can return data only using exceptions.

Consider the following specification:

listmax_exn : int list -> ’a
REQUIRES: true
ENSURES:
listmax_exn L ∼=

{
raise (Max m), if m is the max element of L
raise NoMax , if L ∼= []

}

This function never evaluates to a value.

Brandon Wu Exceptions 22 June 2023 44 / 47

Exception Handling On Steroids

We can then implement listmax_exn like so:
exception NoMax
exception Max of int

fun listmax_exn [] = raise NoMax
| listmax_exn [x] = raise (Max x)
| listmax_exn (x::xs) =

(listmax_exn xs) handle
Max y => raise (Max (Int.max (x, y)))

There’s very little reason to do this. But it sure looks fun.

Brandon Wu Exceptions 22 June 2023 45 / 47

Conclusions

There is nothing inherently wrong with exceptions. Because of the fact that they are
not represented in the type system whatsoever, generally there is a preference to
avoid them where possible, but there are use cases.

When dealing with cases where preconditions really are very clear, it is not wrong to
use functions which can possibly be exception-raising, so long as to do otherwise
would be a significant detriment. Clean code comes first, but not at the risk of
compromising the safety of our software!

A very common use case for exceptions is to implement error handling, when the
software definitely does not need to resume, but can just print out information, and
then exit.

Brandon Wu Exceptions 22 June 2023 46 / 47

Thank you!

	Exceptions
	Using Exceptions
	Custom Exceptions
	Exceptional Control Flow

