


Lesson Plan

1 More Types

2 Functions

3 Binding and Scope

4 Pattern Matching

5 Equivalence

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 2 / 60



Last time

In the last lecture, we learned about expressions, values, and types.
We learned that only well-typed expressions are evaluated, and that expressions
can exhibit one of three behaviors:

• Evaluate to a value
• Raise an exception
• Loop forever

We also saw some examples of typing rules which SML uses to determine whether
an expression is well-typed or not.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 3 /60



1 - More Types



More on types

There are a few basic types to know in SML.

The base types comprise of a few simple primitives:

• int - 1, 150, 412
• real - 1.0, 1.50
• char - #"a", #"1"
• bool - true, false
• string - "functions", "are", "values"

Types get a lot more interesting, though!

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 5 / 60



Tuples Types Guide Structure

SML has tuples, which are just collections of values of other types.

So for instance, valid tuples include:

• (1, 2) : int * int
• (1, "hi") : int * string
• ("a", true , 1.0) : string * bool * real

Def We call a type like int * int or string * bool * real a tuple type, or
product type.

Note Tuples evaluate from left to right. So (1 + 1, 2 + 2) =⇒ (2, 2 + 2) =⇒
(2, 4) .

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 6 /60



More on Tuples

Def The typing rule for tuples is that if e1 : t1, e2 : t2, ..., en : tn, then
(e1, e2, ..., en) : t1 * t2 * ... * tn

Note Parentheses matter! The type int * string * bool is different than
int * (string * bool)

So for instance, (1, 2, 3) : int * int * int is a valid tuple, but so is
(1, (2, 3)) : int * (int * int). These are different values!
The first value is a tuple of three things, but the second is a tuple of two things,
where the second part is itself a tuple.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 7 / 60



2 - Functions



Functions

Similarly to how we can use * to make tuple types out of other types, we can use ->
to make function types out of other types.
Remark This is because * and -> are known as type constructors.

Def We call a type like int -> int a function type, which takes in a value of type
int and evaluates to an expression of type int .

For instance, we have not : bool -> bool, such that not true =⇒ false .

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 9 /60



Lambda Expressions

Similarly to how we can create expressions with tuple type, we can create
expressions with function type.

We write fn (x : int) => x + 1 for the function which takes in an int, and
adds one to it. We call this a lambda expression.
Note Lambda expressions are expressions! They do not declare a function that
can be referenced, they are anonymous, and do not have names .

So (fn (x : int) => x + 1) 2 =⇒ 3.

Lambda expressions are themselves values, meaning that they do not reduce to
anything else.

Note Functions are values.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 10 / 60



Functions are Values

As we will say many times over the course of the semester, functions are values.

This means that they can be bound to variables like any other value! So while we
earlier wrote

fun double (n : int) : int = n + n

we could equivalently have written
val double = fn (n : int) => n + n

We will have more to say on this idea later.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 11 / 60



Lambdas Aren’t Recursive

Suppose I wanted to declare the fact function using a lambda expression.

I might write something like:
fn (n : int) =>

if n = 0 then 1
else (* ??? *)

But what do I call in the recursive case? How do I call a lambda recursively?

Note You can’t. Lambdas are non recursive. They don’t have names, so they can’t
reference themselves.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 12 / 60



Function Evaluation

Note An expression e1 e2 first evaluates e1, and then e2 .
SML is an eagerly evaluated language, meaning that arguments to functions are
always reduced to values, before the function can be called.
Consider the expression (fn (x : int * int) => 150) (1 + 1, 3 * 4)

(fn (x : int * int) => 150) (1 + 1, 3 * 4)

=⇒ (fn (x : int * int) => 150) (2, 3 * 4) (def of +)
=⇒ (fn (x : int * int) => 150) (2, 12) (def of *)
=⇒ 150 (function application)

Note that, when stepping expressions like this, usually we will want to cite a
justification for each step to the right of the newly-obtained expression. You
should do this on your homework too.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 13 / 60



Stepping into a Function

We glossed over this in the previous lecture, but when we apply a function, it’s with
the goal of stepping into the function body.

Def The body of a function is the expression that the function should evaluate to,
given arguments.

So for instance, in fn (n : int) => n + n, the body is the expression n + n.

When the arguments to a function are values, we can then substitute those values
for the function’s arguments, within its body. This produces bindings.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 14 / 60



3 - Binding and Scope



Variable Declarations

What is a variable declaration really doing?

The syntax:
val x : int = 2

binds the value 2 to the variable x.

Def Binding is the act of producing a new association of a value to a variable
name.

Note Binding is not assignment.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 16 / 60



Binding vs. Assignment

The easy way to see how binding differs from assignment is to consider the
following code:

val x : int = 2
fun foo (y : int) : int = x + y
val x : int = 4

After this code, what is the value of foo 1?

The imperative answer is 5.

The SML answer is 3.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 17 / 60



Binding vs. Assignment

val x : int = 2
fun foo (y : int) : int = x + y
val x : int = 4

In an imperative language, you change the world by reassigning the value of the
variable x.
This changes the value referenced by fun foo (y : int) = x + y.

In a functional language, you bind a new, unrelated variable called x, whose value is
4, but is not the same as the one referenced in foo.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 18 / 60



A Binding Analogy

Suppose you are named Brandon, and you have a 9-5 job.

Your manager walks in and says "Brandon, your performance has been suffering
lately", and walks out.

Then, another engineer named Brandon walks in and sits down.

You are still in trouble.

The point: Just because something (or someone) named the same walked in,
doesn’t change who your manager was talking about!

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 19 / 60



Environments

Def The environment at a particular point in a program is the collection of all
currently active bindings.

val bindings and fun declarations introduce new bindings into the environment,
and displace old ones. This is called shadowing.
When a binding is shadowed, we are no longer in its scope.

We use the mathematical notation [5/x, true/y], for instance, for the environment
where 5 is bound to x and true is bound to y.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 20 / 60



A Trace of Environment

Let’s look at an example of a trace with environments attached.

Suppose our program is:
val x : int = 1
val y : int = 1 + x
val x : int = 3
val z : int = x + y

val x : int = 1 (results in) [1/x]

val y : int = 1 + x (results in) [1/x, 2/y]

val x : int = 3 (results in) [3/x, 2/y]

val z : int = x + y (results in) [3/x, 2/y, 5/z]

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 21 / 60



Functions and Environments

It might seem like this is no different than assignment.
Key Environments and bindings are shown as different when functions get
involved.

Def A function binding is composed of two things, a lambda expression and the
environment at the time of binding. This is known as a closure.
This means that a function always only knows about what was in the environment
when it was first bound. It doesn’t see any bindings that happen later.

Note Functions are elephants. (they remember everything)

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 22 / 60



Functions and Environments Programmatic Thinking is Mathematical Thinking

val x : int = 2
fun foo (y : int) : int = x + y
val x : int = 4

After the first binding of x, we have the environment [2/x].

Then, we could represent the closure as:

[2/x]

fn (y : int) => x + y

which is bound to the identifier foo. Future bindings will not change this.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 23 /60



4 - Pattern Matching



Unpacking Tuples

We can write declarations that bind tuples to variables, for instance:
val x : int * int = (1, 2)

But now, how do we access the different parts of the tuple? What if we want to get
1 and 2 back out of the tuple?

We can unpack it using a pattern.
val (x, y) : int * int = (1, 2)

This produces the environment [1/x, 2/y]

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 25 / 60



Pattern Matching

Def A pattern is a way to describe the form of a value. A value can either match to
a pattern, or not.
The goal is that patterns should be used to describe the values that you are
interested in.

For the example we gave above, we used the pattern (x, y) to deconstruct the
value (1, 2), because we knew that the tuple (1, 2) has two entries.

The right-hand side of the expression doesn’t even need to be a value! It turns out,
all you need to know to figure out the right pattern to use is the expression’s type.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 26 / 60



Types and Patterns Types Guide Structure

Types and patterns have a nice relationship, where they both correspond to each
other.

For instance, if we wanted to have a declaration like:
val (x, y) = (* something goes here *)

then it would be ill-typed to put something like 1. Why?

Answer: 1 is not a tuple! It doesn’t have components to unpack.

The fact that we have the pattern (x, y) implies that the right-hand side should
be of type t1 * t2, for some types t1, t2. In other words, it needs to be a tuple of
two components.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 27 / 60



More Patterns

Patterns can be used for a lot more than tuples, however. Here’s some other
examples of patterns:

• variables, such as x, y, z. These produce a binding on a successful match.
• the wildcard pattern, _. This matches all values, and produces no binding.
• constants, such as 1, "hi", and true
• tuples, where each entry is itself a pattern. For instance, (_, x, 2) is a valid
pattern.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 28 /60



Val Bindings and Patterns

Now, we are ready to talk about the form of a val declaration. A val declaration
looks like:

val <pattern > : <type > = <expr >

You can put any pattern on the left-hand side of a binding! Some patterns might not
type-check, however.

val 2 = (1, 2) (* doesn ’t typecheck! never runs *)

If a value matches to a pattern, then it will produce some number of bindings, and
then proceed with the program. If the value doesn’t match, then an exception will
be raised, for instance on the binding

val 2 = 1 (* doesn ’t match! exception raised *)

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 29 / 60



More Control Flow

We have seen some simple examples of functions, such as
fun double (n : int) : int = n + n

But what if we want functions with more complicated control flow? We might
introduce conditionals.

fun isEven (n : int) : bool =
if n mod 2 = 0 then true
else false

Warning Do not do this.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 30 /60



Conditionals

Hold for a brief interjection.
In SML, we have the if expression. Note that it is an expression. It looks like:

if <expr1 > then <expr2 > else <expr3 >

Def The typing rule for if expressions is that for if e1 then e2 else e3 : t iff
e1 : bool, and e2 : t and e3 : t .
Why? Because otherwise we could get type unsafety! Consider the following
conditional expression:

if sasquatchIsReal then 2 else "foo"

Depending on if sasquatchIsReal , we might return an int, or we might return a
string ! This is really bad, because this breaks our whole future-sight of
type-checking.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 31 / 60



What They Don’t Want To Tell You About If Expressions, But I Will

Back to the warning.
The way that if e1 then e2 else e3 works is that if e1 evaluates to true, then
the whole expression evaluates to e2. Otherwise, if e1 evaluates to false , then the
whole expression evaluates to e3.
So let’s write the computation trace of isEven 2.

isEven 2 =⇒ if 2 mod 2 = 0 then true else false (def of isEven)
=⇒ if 0 = 0 then true else false (def of mod)
=⇒ if true then true else false (def of =)
=⇒ true (if expression)

This is really redundant.
Lesson Never write if e then true else false !

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 32 /60



More Complex Functions Recursive Problems, Recursive Solutions

Now that we have if expressions, we can write more complicated functions.

fun fact (n : int) : int =
if n = 0 then 1
else n * fact (n - 1)

Function syntax in SML actually offers a better way of writing certain things. For
instance, we could write:

fun fact (0 : int) : int = 1
| fact (n : int) : int = n * fact (n - 1)

We call these function clauses.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 33 /60



Function Clauses

We write function clauses in the general form as:

fun f (<pat1 > : <ty1 >) : <ty2 > = <expr1 >
| f (<pat2 > : <ty1 >) : <ty2 > = <expr2 >
...

When a function written in this way takes in an argument, that argument has already
been evaluated to a value.
That value is then matched against each pattern linearly, until it finds a pattern that
matches.

So fact 1 matches against the pattern 0, fails, and then matches against n. This
succeeds, so then we enter the case of n * fact (n - 1), with the environment
[1/n].

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 34 /60



Function Clauses

Function clauses behave similarly to if expressions, in that they must always return
the same type. Otherwise, we might get type unsafety.

Writing functions via clauses is generally more powerful than when using if
expressions. Pattern matching is a more fundamental notion than conditionals, and
we will see in the next lecture what else we can use it for.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 35 /60



5 - Equivalence



What’s the point? Programmatic Thinking is Mathematical Thinking

We have now described the difference between variable binding in SML and
assignment in other languages.
A question remains - what’s the point?

In the first lecture, we described some of the ideals of a good programming
language, and one of them was modularity. We should be able to change a part of
a program without affecting another.
Remember that functions in SML are like mathematical functions, they always give
the same outputs for the same inputs (purity).

Variable binding allows a stronger property, which is that no binding after a
function declaration can change that function’s behavior.
In other words, binding preserves function equivalence.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 37 / 60



Extensional Equivalence

Functional programming lends itself to reasoning mathematically about code.
To supplement that, we will have a notion of when code is equivalent.

Def Two expressions of the same type are said to be extensionally equivalent if
they:
• evaluate to the same value,
• both loop forever,
• or both raise the same kind of exception

We write e1 ∼= e2 when e1 and e2 are extensionally equivalent.

So for instance, 2 + 2 ∼= 4 ∼= 1 + 3.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 38 /60



Equivalence vs. Reduction

You might think that we already saw something like this.

In the last lecture, we explored the idea of reduction, which is when an expression
is simplified to another. For instance, we learned that 1 + 1 =⇒ 2.

Based on the definition given before, we also know that 1 + 1 ∼= 2. What gives?
What’s the difference?

The reason is that reduction is stronger than equivalence.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 39 /60



Reduction is Stronger than Equivalence

To say that a condition, or conclusion, is stronger than another, is to say that it
implies the thing that it is stronger than.

For instance, if some fact A being true implies that B must be true, then A is a
stronger condition, because knowing A also gives you information about B. But,
knowing B doesn’t necessarily tell you anything about A.

So for instance, "I am a human" would be a stronger condition than "I breathe air",
because if I know I am a human, then I also already know I breathe air.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 40 /60



Back to Equivalence

What I’m getting at here is that reduction implies equivalence.

Any time that you know that e1 =⇒ e2, you also know that e1 ∼= e2. So reduction is
a stronger condition.

What this means is that, whenever you are deciding which to use, know that you
can’t freely go from one to another! If you know equivalence, you don’t necessarily
know reduction. You need to take care to make sure you use the right notation.1

1There is at least one homework problem in this class where the distinction is important.
Brandon Wu Equivalence, Binding, and Scope 18 May 2023 41 / 60



A Picture of Evaluation

. . .

1+(1+2)

. . .

1+(2+1)

. . .

(1+1)+2

. . .

2+(1+1)

. . .

(1+2)+1

. . .

(2+1)+1

1 + 3 2 + 2 3 + 1

4

Every node2 in this graph is extensionally equivalent, but reduction only flows one
way!

2If you want to sound really fancy, say "lattice".
Brandon Wu Equivalence, Binding, and Scope 18 May 2023 42 / 60



Referential Transparency Programmatic Thinking is Mathematical Thinking

It turns out that this idea gives us some very nice properties.

Def Referential Transparency - If e1 ∼= e2, then replacing e1 with e2 anywhere in
a program will produce an extensionally equivalent program.

So for instance, you could replace 2 + 2 with 1 + 3 anywhere, and always be
assured that program behavior will not change.
In other words, you can swap "equals for equals".

Note This is the foundation of equational reasoning, which lets us reason about
code like we would reason about math.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 43 /60



The Refactoring Lemma

Another way to think of referential transparency is as the refactoring lemma.
Refactoring is easy, safe, and mathematically guaranteed.
For instance, suppose that you are the engineering manager at a large tech firm
named after a red fruit that grows on apple trees. You hire an intern for the summer,
and you review their first PR, and you see:

if flagIsSet then (
flagisSet andalso (

if permissionsGranted then
true

else
permissionsGranted

)
) else false

What the hell is this.
Brandon Wu Equivalence, Binding, and Scope 18 May 2023 44 /60



Equivalence Saves Lives

The intern didn’t remember their equivalences!
For instance, if we are within the then branch of an if expression, we know that the
expression we cased on must be equivalent to true . The same is true for the else
branch and false .
Let’s do some refactoring based on equivalences:

if flagIsSet then (
true andalso (

if permissionsGranted then
true

else
false

)
) else false

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 45 / 60



Referential Transparency Saves Lives

Well, now we see true andalso e, which we know should always evaluate to e.
So let’s simplify again:

if flagIsSet then (
if permissionsGranted then

true
else

false
) else false

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 46 /60



Referential Transparency Saves Lives

We also see that we have if e then true else false , which we learned a few
slides ago is a cardinal sin. So let’s get rid of that:

if flagIsSet then permissionsGranted
else false

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 47 / 60



Referential Transparency Saves Lives

We can make a final observation that this condition is only true when both
flagIsSet and permissionsGranted are true. Therefore, we can simply write it
as:

flagIsSet andalso permissionsGranted

Note Referential transparency saves lives.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 48 /60



On the Equivalence of Values

Up until this point, we’ve said that a value is a "final answer". You should be able to
tell if values are the same just by looking at them, like with 2 and 2, or with (3, 4)
and (3, 4).

But what about functions?
Are fn (x : int) => x + x and fn (x : int) => 2 * x extensionally
equivalent?

It’s now hard to tell, because these lambda expressions are values, but it’s not
obvious if they are extensionally equivalent or not.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 49 /60



Extensional Equivalence for Functions

Functions necessitate their own rule for extensional equivalence.

Def Two functions f : t1 -> t2 and g : t1 -> t2 are extensionally
equivalent if for all values x : t1, f x ∼= g x .
In other words, two functions are equivalent if for all inputs, they give equivalent
outputs.

Note We specified that f x ∼= g x, not that f x and g x reduce to the same
value. Why?

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 50 / 60



Totality

The reason why is simple - some functions do not have defined outputs!

We described functions in SML as mathematical functions, which is true, but not
exactly in the same way as some mathematical functions, such as +, or sin.
SML functions can be partial, that is, undefined on some input. There may be f and
x such that there is no v where f x ↪→ v.

Def We say that f : t1 -> t2 is total if for all values v : t1, there is a value
v’ : t2 such that f v ↪→ v’.
For example, the SML functions +, not, and ^ are all total.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 51 / 60



Specification

Concepts like purity, extensional equivalence, and totality are all just means to an
end, which is being able to specify the behavior of code.

In particular, for functions, we are interested in writing descriptive code, that
accurately reflects the function’s behavior.
To that end, it is helpful to write alongside a function the conditions which must be
true prior to calling the function, and must be true after calling the function.

(* REQUIRES: x is not 0 *)
(* ENSURES: divide x is total *)
fun divide (x : int) : int = 2 div x

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 52 / 60



The Specification of Specification

In this class, our way of writing specifications will follow the five-step methodology.

There are five components to this methodology, shockingly:
1 the function’s type
2 the REQUIRES clause (preconditions)
3 the ENSURES clause (postconditions)
4 the function’s definition
5 test cases!

We will frequently annotate our functions this way this semester.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 53 /60



Specification, pt. 2

We use comments in the form of REQUIRES and ENSURES to describe what must be
true of the inputs the function receives, and what then is guaranteed to hold of the
function’s behavior.

It is often unrealistic to have a function which has meaning on every possible input
(like div, or square root, or logarithm). The REQUIRES helps to describe the range
of "relevant inputs", and the ENSURES helps to describe what the function does.

These "contracts" pop up in real code all the time:
• this function must be called with only safe values,
• this library can only be invoked in single-threaded programs,
• this API is not guaranteed to work with non-ASCII characters

It is important that code is documented so users and maintainers know pertinent
information about it!

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 54 /60



Specification, pt. 3

The last piece of the formula is writing tests.3

In this class, we will use a 150-specific testing framework, where we write
something like:

val () = Test.int ("test1", 2 + 2, 1 + 3)

which will raise an exception if the second and third parts of the tuple do not
evaluate to the same value.

Note I realize writing tests sucks. So does life, sometimes.

3There’s a lot I could say here about the importance of writing tests. Test-driven development is a
real thing, and especially in imperative languages, it’s very important to have a solid backbone of tests
to make sure you don’t accidentally regress behavior when introducing a small change. However, this
is a class on functional programming, and not software engineering, so I’ll decline to comment for
now.4
4This is a really long footnote.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 55 / 60



Back to Fact

Now that we have all these tools for mathematically analyzing code, let’s look at a
specific example. Let’s take the factorial function that we wrote earlier.

fun fact (0 : int) : int = 1
| fact n = n * fact (n - 1)

Question Is fact total?

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 56 /60



A Specific Specification

Answer: It is not.
The fact function loops forever on a negative input.
But for our intents and purposes, we don’t really care about what fact does on
negative inputs, anyways. So let’s restrict our domain of interest to strictly
non-negative numbers.

(* fact : int -> int *)
(* REQUIRES: n >= 0 *)
(* ENSURES: fact n evaluates to the nth factorial *)
fun fact (0 : int) : int = 1

| fact n = n * fact (n - 1)

Lesson Oftentimes, we are interested in only a subset of the domain of a function,
and we only get to make interesting claims about its behavior when we restrict our
attention to it.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 57 / 60



Remark: Slide Notation

Instead of putting specifications in comments above the code, when writing code
within these slides, they will often be conveyed via specification blocks.

For instance, for the fact function, I would instead write:

fact : int -> int
REQUIRES: n >= 0
ENSURES: fact n evaluates to n!

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 58 /60



Conclusion

In this lecture, we learned a lot about some of the core tools that we have at our
disposal when writing SML programs!

We also learned about some of the more mathematical underpinnings of the
language, which comes up in binding and scope, as well as our ability to reason
about code via using concepts like referential transparency, totality, and
specifications.

We also saw a little bit of the interplay between patterns and types. We will
develop this more in the future.

Brandon Wu Equivalence, Binding, and Scope 18 May 2023 59 /60



Thank you!


	More Types
	Functions
	Binding and Scope
	Pattern Matching
	Equivalence

