

Lesson Plan

1 Pipelines

2 Continuation-Passing Style

3 CPS Translation

4 Control Flow

Brandon Wu Continuation-Passing Style 20 June 2023 2 / 63

Last time

Last lecture, we explored more applications of higher-order functions. In particular,
we talked about how we can take advantage of currying to create staged
functions, which can do useful work by shifting around computations with respect
to when curried arguments are taken in.

We then looked at more examples of HOFs in action, such as by generalizing map
and fold to tree data structures.

Finally, we looked at using the |> operator to sequentialize our code for enhanced
readability, as well as the option monad, which let us reduce the amount of
boilerplate code we needed to write.

Brandon Wu Continuation-Passing Style 20 June 2023 3 / 63

1 - Pipelines

Paying the Piper

We defined the |> operator before as
infix |>
fun x |> f = f x

This lets us produce code like
[1, 2, 3]
|> map Int.toString
|> foldr (fn (x, y) => x ^ "," ^ y) ""

This works pretty well!

Brandon Wu Continuation-Passing Style 20 June 2023 5 / 63

A Less Convenient Example

What if we were doing something slightly different? Suppose we now have a list of
strings, and we want to interpret them as integers and find the average.

["1", "2", "3"]
|> map Int.fromString
|> map Option.valOf
|> (fn L => (foldr op+ 0 L) div (List.length L))

We have to introduce a lambda, because we want to use the value of L twice. We
need to know how much the denominator is.

This is kind of gross, and breaks our nice sequencing, though! Because of this div
function, it’s not clear what the control flow of our function is. Before, our steps were
cleanly separated by pipes – now, we rely on evaluation order. Can we do better?

Brandon Wu Continuation-Passing Style 20 June 2023 6 / 63

Super Explicit Piping

Recall the idea of eta expansion1, which is that any valuable function expression f
is extensionally equivalent to putting it into a lambda which explicit names its
argument, like fn x => f x.

Let’s use that to explicitly name each result.

["1", "2", "3"]
|> (fn L1 => map Int.fromString L1
|> (fn L2 => map Option.valOf L2
|> (fn L => foldr op+ 0 L
|> (fn total => List.length L
|> (fn len => total div len)))))

1See Lecture 10: Combinators and Staging if you need a refresher.
Brandon Wu Continuation-Passing Style 20 June 2023 7 / 63

Super Explicit Piping

Actually, we usually prefer to indent it slightly differently:
["1", "2", "3"] |> (fn L1 =>
map Int.fromString L1 |> (fn L2 =>
map Option.valOf L2 |> (fn L =>
foldr op+ 0 L |> (fn total =>
List.length L |> (fn len =>
total div len)))))

Now, each expression, such as map Int.fromString L1, is placed on the same
line as the lambda expression that it is being piped into, which explicitly names the
result of the computation (in this case, L2).

Now this looks nice and sequential!

Brandon Wu Continuation-Passing Style 20 June 2023 8 / 63

Alternatively Indented Piping

In case you’re having trouble reading the previous code, this might be a little more
clear:

["1", "2", "3"] |> (fn L1 =>
map Int.fromString L1 |> (fn L2 =>

map Option.valOf L2 |> (fn L =>
foldr op+ 0 L |> (fn total =>

List.length L |> (fn len => total div len)
)

)
)

)

The point: The colored parentheses and indentation denotes the beginnings and
endings of some very large lambda expressions, which simply denote everything
that should be done with the thing that is being piped into it.

Brandon Wu Continuation-Passing Style 20 June 2023 9 / 63

Straight to the Point

But wait, let’s revisit the pipeline we just created:
["1", "2", "3"] |> (fn L1 =>
map Int.fromString L1 |> (fn L2 =>
map Option.valOf L2 |> (fn L =>
foldr op+ 0 L |> (fn total =>
List.length L |> (fn len =>
total div len)))))

It seems that every single function call is destined to be immediately piped into a
lambda of what it must do next. What if we cut out the middleman, and define each
function so it takes in that lambda directly?

Brandon Wu Continuation-Passing Style 20 June 2023 10 / 63

Cool Functions

We call such functions, that take in lambdas that their results are going to be piped
into, cool functions.

fun mapCool f L k = map f L |> k
fun foldrCool f acc L k = foldr f acc L |> k
fun lengthCool L k = length L |> k

["1", "2", "3"] |> (fn L1 =>
mapCool Int.fromString L1 (fn L2 =>
mapCool Option.valOf L2 (fn L =>
foldrCool op+ 0 L (fn total =>
lengthCool L (fn len =>
total div len)))))

Please take a second to convince yourself that, via referential transparency, this is
exactly equivalent to the previous code.

Brandon Wu Continuation-Passing Style 20 June 2023 11 / 63

let It Go

But all of this seems a little complicated. Why don’t we just use a let?
let

val L1 = ["1", "2", "3"]
val L2 = map Int.fromString L1
val L = map Option.valOf L1
val total = foldr op+ 0 L
val len = List.length L

in
total div len

end

It’s similarly readable.2

2Actually, massively more so.
Brandon Wu Continuation-Passing Style 20 June 2023 12 / 63

let It Go

What if we wanted to do this for a recursive function, though?

fun fact 0 = 1
| fact n =

let
val rec_ans = fact (n - 1)
val res = n * rec_ans

in
res

end

Uh oh! We run into a problem that we saw several lectures ago...

Brandon Wu Continuation-Passing Style 20 June 2023 13 / 63

A Tail Problem

This function is not tail recursive!

We make the recursive call to fact, and then multiply it by n. Actually, this is
exactly equivalent to the ordinary fact function we would ordinarily write, just
spread out on multiple lines.

We know the solution, of course. Let’s write:
fun tfact 0 acc = acc

| tfact n acc = tfact (n - 1) (acc * n)

Is it always straightforward, though?

Brandon Wu Continuation-Passing Style 20 June 2023 14 / 63

A Redundant Problem

Let’s try map. For this one, we similarly cannot naively use a let for our
intermediate computations.

fun tmap f [] acc = acc
| tmap f (x::xs) acc = tmap f xs (f x :: acc)

fun map f L = tmap f L []

Seems good, right?

Warning Wrong. This is an incorrect implementation of map!

Brandon Wu Continuation-Passing Style 20 June 2023 15 / 63

A Redundant Problem

We see that tmap Int.toString [1, 2, 3] [] ↪→ ["3", "2", "1"]! It
reverses the list!
What can we do? Well, maybe all is not lost. It happens to be that we know how to
implement a tail-recursive version of rev:

fun tmap_backwards f [] acc = acc
| tmap_backwards f (x::xs) acc = tmap f xs (f x :: acc)

fun trev [] acc = acc
| trev (x::xs) acc = trev xs (x::acc)

fun map f L = trev (tmap_backwards f L []) []

But this just becomes harder to reason about, and ugly as well. Our goal is that
every function should admit a tail-recursive version. Can we make this process
more natural?

Brandon Wu Continuation-Passing Style 20 June 2023 16 / 63

A Tail Problem

How did we get here?

1 We wanted to write nicely sequenced operations that chained together
2 We wanted to be more explicit about our intermediate computations, because

we might want to use them in later steps

One way to solve is by what we did earlier, having each function in our pipeline take
in a lambda which contained the "next step" to be done.

These criteria are also satisfied with let expressions, except for the fact that in
most cases, simply using a let ends up being non tail recursive!

Key This method of taking in a lambda of the "next step" provides a more
straightforward way to translate a function to a tail recursive style. We call this
continuation-passing style.

Brandon Wu Continuation-Passing Style 20 June 2023 17 / 63

2 - Continuation-Passing Style

Continuations

What is a continuation?

Def A continuation is a function taken in as an argument, which denotes what to
do after the current computation.

It is named as such because it tells the function taking it in how to continue once it
finishes its computation.

For instance, the declaration
fun mapCool f L k = map f L |> k

has the function k as a continuation, because it passes its return value directly to
the continuation function.

Brandon Wu Continuation-Passing Style 20 June 2023 19 / 63

Continuation-Passing Type Signatures

The type of a function taking in a continuation changes in a predictable way.

For instance, if we want a function of type int -> string -> bool to take in a
continuation, then its type would change from

int -> string -> bool

to
int -> string -> (bool -> ’a) -> ’a

Note The return type is polymorphic, because it depends on what the particular
continuation that is passed in does!

Brandon Wu Continuation-Passing Style 20 June 2023 20 / 63

A Simple CPS Example

For instance, suppose we wanted to write the following function in CPS:

add : int -> int -> int
REQUIRES: true
ENSURES: add x y ∼= x + y

fun add x y = x + y

Brandon Wu Continuation-Passing Style 20 June 2023 21 / 63

A Simple CPS Example

The following would suffice:

addCPS : int -> int -> (int -> ’a) -> int
REQUIRES: true
ENSURES: addCPS x y k ∼= k (x + y)

fun addCPS x y k = k (x + y)

Is it always as simple as this, though? Suppose we were trying to make fact in CPS:

Brandon Wu Continuation-Passing Style 20 June 2023 22 / 63

CPS and Tail Recursion

fun factCPS f L k = k (fact f L)

Warning This function is not tail recursive, nor is it CPS!

There’s something wrong with our implementation. We do indeed call k, but we
make another call to fact, which is a hugely non tail-recursive function! Moreover,
it trivializes the problem.

Our goal here was to transform a non-tail-recursive function into a tail-recursive
one. Just adding a trivial continuation like this doesn’t make it tail recursive,
however.

To convert a function like fact into CPS, we cannot rely on the definition of fact
itself. We need to rewrite fact entirely!

Brandon Wu Continuation-Passing Style 20 June 2023 23 / 63

CPS and Coolness

Let’s relate this to that idea of cool functions that we defined earlier, which are
functions that pipe some result into the continuation they take in.

As we said, factCPS as we’ve defined here is most definitely not actually in CPS:
fun factCPS f L k = k (fact f L)

but it is a cool function, because it gives its result to k, its continuation.

Key Fact CPS is cool. That means all CPS functions are cool functions. But not all
cool functions are CPS.

For defining recursive functions like factCPS , it turns out definitions like the above
are on the right track, they just aren’t cool enough. We will define a cooler function
that maintains the property of tail recursion.

Brandon Wu Continuation-Passing Style 20 June 2023 24 / 63

The Rules of CPS

Here are the rules defining a function in CPS:

Def We say a function is in continuation-passing style if it fulfills the following
criteria:

1 It takes in and uses continuations
2 It makes calls to other functions with continuations (including itself) as tail calls
3 It only calls continuations as tail calls

Key Fact CPS is cool + tail recursive!

Brandon Wu Continuation-Passing Style 20 June 2023 25 / 63

fact with let

This is what we had before, when we tried to write sequencing using let:

fun fact 0 = 1
| fact n =

let
val rec_ans = fact (n - 1)
val res = n * rec_ans

in
res

end

How can we rewrite this in CPS?

Brandon Wu Continuation-Passing Style 20 June 2023 26 / 63

CPS for Recursive Functions

For recursive functions, the process of converting to CPS is more involved.

The distinction here has to do with the fact that we have to make sure any recursive
calls to the function happen last! Otherwise, our function will not be tail recursive,
and therefore not in CPS.

The way to think about this is to draw a distinction between writing down
instructions versus remembering instructions. In another sense, the difference is
the distinction between now and later.

Brandon Wu Continuation-Passing Style 20 June 2023 27 / 63

Now and Later

My friend Jonny and I are in a band, and every so often we want to play music
together. I ask Jonny to go print out the sheet music for our latest song, and he
returns to me with the music.

Unfortunately, the stack of papers is all out of order! I sort them so that the music is
in the right order, and we play.

This happens a couple of times before I realize that the fact that I need to keep
organizing the music after Jonny prints it for me is annoying. I need to drop what I’m
doing and start sorting it, and the key problem is I need to remember to sort it! This
takes up space in my brain.

A better way of doing things would be for me to, instead of later having to
remember to sort the papers, to ask Jonny right now to sort the papers for me, and
then bring them back to me in the right order.

Brandon Wu Continuation-Passing Style 20 June 2023 28 / 63

Later (Remembering Instructions)

let
val rec_ans = fact (n - 1)
val res = n * rec_ans

in
res

end

Using let to make a few bindings illustrates the later mindset, which entails
remembering instructions.
In this code, I need to first make a call to fact (n - 1), and then remember to
multiply it afterwards. This takes up space in the computer, because we need to do
something after the fact! This is super not nice.
This means that after the recursive call, we later need to remember to do further
work. This means we have to remember instructions.

Brandon Wu Continuation-Passing Style 20 June 2023 29 / 63

fact in CPS

But, if we just give the perspective a switch:

factCPS : int -> (int -> ’a) -> ’a
REQUIRES: n >= 0
ENSURES: factCPS n k evaluates to k (fact n)

fun factCPS 0 k = k 1
| factCPS n k =

factCPS (n - 1) (fn rec_ans =>
let

val rec_ans = rec_ans
val res = n * rec_ans

in
k res

end
)

Brandon Wu Continuation-Passing Style 20 June 2023 30 / 63

Now (Writing Instructions)

In this example, instead of executing the call to factCPS and then having work to
do after, we make a tail call to factCPS !

The difference is that we put the work that must be done afterwards into a
continuation, which is to say a lambda expression. This means that we don’t need
to do anything after the recursive call, but we tell the recursive call what it needs to
do after, now.

Another way to think about it is that, by modifying the function that we pass into our
CPS function, like factCPS , we are essentially treating the continuation as a
functional accumulator, albeit one which accumulates instructions rather than
data.

Brandon Wu Continuation-Passing Style 20 June 2023 31 / 63

Demystifying the Analogy

In this analogy, Jonny is our recursive call, and the sheet music is the value that we
want it to return.

The choices are either to be direct, or to use CPS.

In a direct-style function, we have our recursive call return to us a value, which we
then need to remember to do something to. We need to remember instructions to
later execute on the value which it returns to us. In the case of fact, that is to
multiply the recursive value by n.

In a CPS function, we write down instructions by encoding them into a lambda, and
then we give those instructions to the recursive call. This way, we need to do no
work on our part – the recursive call takes care of it for us. This means that instead
of needing to remember instructions, we simply write it down now.

Brandon Wu Continuation-Passing Style 20 June 2023 32 / 63

Lambdas as Instructions

I’ve used the analogy of lambda expressions as instructions a few times now.

The idea is that a lambda expression is a list of steps to be done with a currently
unknown input. The key observation is that everything in the body of a lambda
expression is not evaluated. This means that writing down something like:

(fn onions => onions |> chop |> grill |> put sandwich)

is equivalent in intention to a list of instructions, which says:
• Take the onions
• Chop the onions
• Grill the onions
• Put the onions on a sandwich

Brandon Wu Continuation-Passing Style 20 June 2023 33 / 63

Finishing the Translation

After some extensionally equivalent refactoring, we end up with the CPS translation
of fact as:

fun factCPS 0 k = k 1
| factCPS n k =

factCPS (n - 1) (fn rec_ans => k (n * rec_ans))

The final interpretation of this function is as one which, instead of computing the
result of fact on n - 1, and then returning that value to be multiplied, we write
down the instruction to multiply by n now, and carry that forward into the recursive
call.

Brandon Wu Continuation-Passing Style 20 June 2023 34 / 63

Back to Pipelines

We also see that this function can easily be expressed in a way that resembles the
pipelines we discussed at the beginning of this lecture!

Let’s rewrite it slightly so that instead of the body being k (n * rec_ans), it’s the
extensionally equivalent n * rec_ans |> k.

fun factCPS 0 k = k 1
| factCPS n k =

factCPS (n - 1) (fn rec_ans =>
n * rec_ans |> k)

Let’s do a trace to see how this function actually works!

Brandon Wu Continuation-Passing Style 20 June 2023 35 / 63

A CPS Trace

link to asciinema video

Brandon Wu Continuation-Passing Style 20 June 2023 36 / 63

https://asciinema.org/a/WxUSfzU1xOdbJkikgyy6wFJ0l

A Functional Accumulator

One way to envision how this function actually works is that it accumulates its
continuation.

Let’s see how the continuation changes from line to line:
factCPS 3 k

factCPS 2 (fn res1 =>
3 * res1 |> k)

Brandon Wu Continuation-Passing Style 20 June 2023 37 / 63

A Functional Accumulator

factCPS 1 (fn res2 =>
2 * res2 |> (fn res1 =>
3 * res1 |> k))

factCPS 0 (fn res3 =>
1 * res3 |> (fn res2 =>
2 * res2 |> (fn res1 =>
3 * res1 |> k)))

And now, what happens when we break down the continuation? We apply the giant
lambda expression to the argument 1, which is the same as piping 1 into it:

Brandon Wu Continuation-Passing Style 20 June 2023 38 / 63

Breaking Down the Continuation

1 |> (fn res3 =>
1 * res3 |> (fn res2 =>
2 * res2 |> (fn res1 =>
3 * res1 |> k)))

1 * 1 |> (fn res2 =>
2 * res2 |> (fn res1 =>
3 * res1 |> k))

Brandon Wu Continuation-Passing Style 20 June 2023 39 / 63

Breaking Down the Continuation

2 * 1 |> (fn res1 =>
3 * res1 |> k)

3 * 2 |> k

6 |> k

This notation might seem a little arcane, but it can help you understand how CPS is
just a matter of consing onto something which looks like a list of instructions, and
then consuming them from left-to-right.

Brandon Wu Continuation-Passing Style 20 June 2023 40 / 63

Mystery Function

Equipped with this understanding, we can see that this function:
fun mystery [] k = k []

| mystery (x::xs) k = mystery xs (fn res => x :: res |> k)

is just the identity function, because we only ever append to the end of the list of
instructions we generate, and we break it down from left-to-right. This means we
will cons on the oldest elements first, thus preserving our ordering.

Check your understanding Verify this by writing down the "list of instructions", in
the form we just did, and seeing how it’s destructed to preserve the original order!

Brandon Wu Continuation-Passing Style 20 June 2023 41 / 63

3 - CPS Translation

CPS Translation

Here’s the general formula for how we can carry out CPS conversion on a function.

We are, given a function f : t1 -> t2, seeking its CPS version, which is
f_cps : t1 -> (t2 -> ’a) -> ’a such that f_cps x k ∼= k (f x).

1 For a function with return type t, add an extra continuation argument of type
t -> ’a, and then change the return type to ’a.

2 Call the continuation on every single return value of the function.
3 Suppose there is a recursive call to the function, which is the expression e.

Change that to a new variable, let’s say rec_ans .
4 Change the body of the recursive case to one which first performs

e (fn rec_ans => <body >), where the <body > is just the current body of
the function.

Brandon Wu Continuation-Passing Style 20 June 2023 43 / 63

I’m the Map

Let’s execute these translation steps on map. First, we start off with the vanilla
implementation:

fun map f [] = []
| map f (x::xs) =

f x :: map f xs

Brandon Wu Continuation-Passing Style 20 June 2023 44 / 63

I’m the Map: Step 1

Then, let’s add in the continuation k:
fun map f [] k = []

| map f (x::xs) k =
f x :: map f xs

Brandon Wu Continuation-Passing Style 20 June 2023 45 / 63

I’m the Map: Step 2

Now, let’s call the continuation k on every expression which is returned by the
function:

fun map f [] k = k []
| map f (x::xs) k =

k (f x :: map f xs)

Brandon Wu Continuation-Passing Style 20 June 2023 46 / 63

I’m the Map: Step 3

Next, let’s identify the recursive calls to map. In this case, our recursive call e is just
map f xs:

fun map f [] k = k []
| map f (x::xs) k =

k (f x :: map f xs)

Let’s assume that we have the answer to the recursive call already, call it rec_ans ,
and replace e with it:

fun map f [] k = k []
| map f (x::xs) k =

k (f x :: rec_ans)

Brandon Wu Continuation-Passing Style 20 June 2023 47 / 63

I’m the Map: Step 4

Now, we take the recursive case and wrap it in a tail-recursive call to e, the
expression we just replaced, except given a continuation binding rec_ans :

fun map f [] k = k []
| map f (x::xs) k =

map f xs (fn rec_ans => k (f x :: rec_ans))

Brandon Wu Continuation-Passing Style 20 June 2023 48 / 63

I’m the Map

Now we have a complete, CPS version of map!
fun mapCPS f [] k = k []

| mapCPS f (x::xs) k =
mapCPS f xs (fn rec_ans => k (f x :: rec_ans))

Brandon Wu Continuation-Passing Style 20 June 2023 49 / 63

The Method to Madness

It is important to remember why this works in the first place.

All we are doing is making the binding of the recursive call to map explicit. Instead of
leaving it somewhere nested in a big expression, to be used later, we first make the
recursive call to the CPS-ified map, which is then given instructions on what to do
with the recursive call’s value.

The application of k to each returning expression is necessary to complete the
"inductive handshake", to fulfill the promise that we pass whatever value we
compute to the continuation.

Brandon Wu Continuation-Passing Style 20 June 2023 50 / 63

4 - Control Flow

CPS with Optional Returns

We can CPS-ify more interesting examples, that demonstrate the ability to express
more nuanced control flow using continuations.

Consider the case of a function which is allowed to fail, i.e. returns a type t option
for some type t, such as finding an element that satisfies a predicate in a tree:

fun search p Empty = NONE
| search p (Node (L, x, R)) =

if p x then
SOME x

else
case search p L of

NONE => search p R
| SOME res => SOME res

Brandon Wu Continuation-Passing Style 20 June 2023 52 / 63

Continuing from an Option

When the recursive call is made to the function, we see that we have to handle two
cases:

case search p L of
NONE => search p R

| SOME res => SOME res

In essence, the function needs to "continue" from the recursive call in one of two
cases:
• no information, in the NONE case
• a value of type t, for a t tree, in the SOME case

We can think of this as a success case and a failure case.

Brandon Wu Continuation-Passing Style 20 June 2023 53 / 63

Success and Failure

To make our reasoning more explicit, we will separate the logic of these cases into
two continuations.

Instead of a single continuation of type t option -> ’a, we will instead have a
success continuation of type t -> ’a, and a failure continuation of type
unit -> ’a.

Instead of calling our continuation on an optional value to decide which case to
branch on, we will simply call our failure continuation when we would otherwise
return NONE, and call our success continuation on the value we would otherwise
inject into SOME .

Brandon Wu Continuation-Passing Style 20 June 2023 54 / 63

A Specification for Translation

Let’s clarify what our specifications should be, before and after our translation:

search : (’a -> bool) -> ’a tree -> ’a option
REQUIRES: p is total
ENSURES: search p T evaluates to the first element in T that satisfies p, in
inorder traversal, else NONE

searchCPS : (’a -> bool) -> ’a tree -> (’a -> ’b) -> (unit ->
’b) -> ’b

REQUIRES: p is total
ENSURES:
searchCPS p T sc fc ∼=

{
sc x, if search p T ∼= SOME x
fc (), otherwise

}

Brandon Wu Continuation-Passing Style 20 June 2023 55 / 63

CPS Translation (Optional Type)

Here’s the general formula for how we can carry out CPS conversion on a function
which returns an optional value:

1 For a function with return type t option , add two continuation arguments –
one of type t -> ’a (the success continuation), and then one of type
unit -> ’a (the failure continuation). Change the return type to ’a.

2 For every return of NONE, call the failure continuation instead. For every return
of SOME x, call the success continuation on x instead.

3 Suppose there is a case on a recursive call to the function. Replace the case
with a call to the CPS-ified function itself, but with the success continuation
changed to the code in the SOME case, and the failure continuation changed to
the code in the NONE case.

Brandon Wu Continuation-Passing Style 20 June 2023 56 / 63

A Star Search: Step 1

Let’s add in the success and failure continuations, sc and fc.

fun search p Empty sc fc = NONE
| search p (Node (L, x, R)) sc fc =

if p x then
SOME x

else
case search p L of

NONE => search p R
| SOME res => SOME res

Brandon Wu Continuation-Passing Style 20 June 2023 57 / 63

A Star Search: Step 2

Now let’s change the implicit returning values to explicit calls to sc and fc:

fun search p Empty sc fc = fc ()
| search p (Node (L, x, R)) sc fc =

if p x then
sc x

else
case search p L of

NONE => search p R
| SOME res => sc res

Brandon Wu Continuation-Passing Style 20 June 2023 58 / 63

A Star Search: Step 3

We see one case where we dispatch on the return value of search p L.

Let’s change that to instead be a call to search , except with the success and failure
continuations corresponding to the code of each case.

First, let’s identify each branch we are interested in:
fun search p Empty sc fc = fc ()

| search p (Node (L, x, R)) sc fc =
if p x then

sc x
else

case search p L of
NONE => search p R

| SOME res => sc res

Brandon Wu Continuation-Passing Style 20 June 2023 59 / 63

A Star Search: Step 3.5

Now let’s change it to an explicit recursive call:
fun search p Empty sc fc = fc ()

| search p (Node (L, x, R)) sc fc =
if p x then

sc x
else

search p L
(fn res => sc res)
(fn () => search p R sc fc)

Brandon Wu Continuation-Passing Style 20 June 2023 60 / 63

A Star Search

Now we have a complete CPS version of search !
fun searchCPS p Empty sc fc = fc ()

| searchCPS p (Node (L, x, R)) sc fc =
if p x then

sc x
else

searchCPS p L
(fn res => sc res)
(fn () => searchCPS p R sc fc)

Brandon Wu Continuation-Passing Style 20 June 2023 61 / 63

Conclusion

Continuation-passing style is merely a different way of structuring computation.

Instead of following implicit evaluation rules (left to right evaluation, outer then
inner), we explicitly name and sequence every single computation, which makes our
control flow more clear.

The process of CPS conversion that we’ve seen has been rather mechanical. This is
intentional, because it is so mechanical that even a compiler can do it!

Regardless, understanding of CPS is an important skill. Being able to convert
functions into CPS demonstrates mastery over the distinction between data as
ordinary values versus data as function, and CPS-like code shows up in common
applications, such as in the form of callbacks for web programming.

Brandon Wu Continuation-Passing Style 20 June 2023 62 / 63

Thank you!

	Pipelines
	Continuation-Passing Style
	CPS Translation
	Control Flow

