Ct g, S
9 nlllLln;n “aroup ;
_infq)

Fre B8 (Stry, uct g
ing up_j
0->b1g, [.] hnﬂz *group _ino)
if (;:g i; 90U _in60->smagy y
ock)
‘>hln!:ks[.] ~ ‘

i 9roup j
e 9roup_jn ——

mall block
Fn—)nhlncks; e

ive)
< group 1n‘ogg=;gﬂvln5nli?10cks[1]);

s ,;F"' V298 ((unsigneq Long)groupinto->n1ocksyi]y ;
Mod.use y - g5 i,

se
_Mod.use ' Z = Trye KFree(aroupineo)

-‘(tlve modifier of,
; ' eirtoﬂ)g end -ade “"E"'ﬂ@(wﬁ

] | . EXPORTSYMBOL (groupsfree);

U'),I .“m.w F T e _/*l expnrt rnup' 0 to a user-space array =/
I i -8 B “if%ﬂlk e group a mg]zgm#i;si;

c ‘ const struct group_info *group infg
ah‘d

“user =grouplist,
AUgum 202? . const struct group_info *group_j
-

roups_touser(gid_t

Lesson Plan 7\.

The History of Programming Languages
Compiler Theory

Compiler Implementation
m Lexing
m Parsing
m IR Generation
m Code Generation

Brandon Wu Compilers 01 August 2023 2/68

1 - The History of Programming Languages

Prologue A

Let me tell you a story.
Once upon a time, programming languages weren't real.

They were an idea in someone’s head, of something that might be, but which had
never been done yet.

There weren't IDEs, there weren't VS Code extensions, there weren't syntax
highlighters, and there was no Standard ML."

A true horror story.
Brandon Wu Compilers 01 August 2023 4/68

Early Computer Hardware A

Actually, once upon a time, computers weren't real either.?

People did everything by hand or by simple machine. There were no calculators,
and there was no Twitter.3

An early invention in the 1800s led to a loom which could weave a certain pattern
based upon usage of punched cards, literally cards with holes in them. This was
one of the first examples of what could be considered programming, albeit strictly
for loom-weaving.

A little later on in the 1800s, Ada Lovelace and Charles Babbage worked on a
theoretical proposal of a machine called the Analytical Engine, that could execute
arbitrary computations. This was the advent of the general purpose computer.

°'m less bothered about that one.
3Soon, there might not be again.
Brandon Wu Compilers 01 August 2023 5/68

Early Computer Hardware A

By the beginning of the 1900s, Herman Hollerith had the idea of being able to feed
data into a machine via use of punch card, for the purposes of data processing,
record-keeping, and basic arithmetic operations.

He would found the Tabulating Machine Company on this premise, primarily using
punched cards for the purpose of data storage. He then would realize this was a
stupid name, and rename it to International Business Machines Corporation, now
known as IBM.

Fast forward a couple of decades, and Konrad Zuse comes out with the Z3, a
working, programmable electrical computer. Punched cards were used both to
submit program code to the machine, as well as to store the data that it kept and
output.

Brandon Wu Compilers 01 August 2023 6/68

Punch Card Computing A

Some people have expressed that programming in SML/NJ can be an unpleasant
experience, due to a lack of ecosystem and documentation, and rather interesting
error messages.

| want to put this scenario into your head.

You are an engineer in the mid 1900s, and you are one of the first programmers in
the world. You painstakingly punch characters, hole by hole, into punch cards, and
then gather your cards that comprise your program and then walk across the hall to
the other room, where you can wait in line to submit a request to run your program.

If you make a mistake while punching a card, you have to start over. If you drop your
deck of cards, the program is gone.

And still, programming languages are not real.

Brandon Wu Compilers 01 August 2023 7/68

Assembly Programming A

In the 1940s, programs were now being written in assembly language, the lowest
form of language understandable by computers. These are essentially just blocks of
bits that have some particular meaning to the computer, bijected with English words
so that we can remember what they do.

For instance, the following might be an assembly-like syntax:

ADD r1 r2 (*x add rl to r2 x*)
CMP res 0 (¥ compare res to 0 *)

Jz 0x00067AB3EF (*x if zero, jump somewhere x*)
GOTO 0x000B72AF48 (* otherwise jump somewhere else *)

| quote Wikipedia here on the topic, as follows:
It was eventually realized that programming in assembly language required
a great deal of intellectual effort. [citation needed]

Wikipedia claims that a citation is needed. | think that citation is only needed for
people who have never had to write assembly language before.

Brandon Wu Compilers 01 August 2023 8/68

Assembly Programming A

So programmers spend hours, days, weeks poring over these very basic symbols,
having to reconstruct every single operation that the computer is doing in their
heads, and needing to remember the exact state of the computer at each step, at
the risk of making an incorrect assumption and writing a bug.

There is no recovery from a typo. There is no such thing as a type error.

And still, programming languages are not real.

Brandon Wu Compilers 01 August 2023 9/68

A Language for Computing A

Then, one day, someone has an idea. Maybe multiple people have an idea.

One such person was John W. Backus, in the 1950s, whose idea was that maybe we
don’t need to write assembly by hand. Maybe we can write instructions that could
then be converted into the assembly itself.

John Backus called the idea in his head FORTRAN, and by the end of the decade, a
program was implemented to do exactly that.

This was the first FORTRAN compiler,

And then, programming languages were real.

Brandon Wu Compilers 01 August 2023 10/68

2 - Compiler Theory

What is a Compiler? A

What on earth really is a compiler?

A compiler can be put in very broad terms as a program that translates data
from one form to another. Usually, we refer to a compiler for programming
languages, which turns text in some language into some other form.

For instance, SML/NJ is a compiler which takes in SML programs, and turns it into
native machine code for your computer, for a variety of computer architectures.

A sister idea is also that of:
An interpreter is a program which reads in a program, and executes it on the
computer directly, without necessarily explicitly translating it to a different form.

The SML/NJ REPL is an interpreter.

Brandon Wu Compilers 01 August 2023 12/68

Compilers and Interpreters Types Guide Structure 7\,

Put in SML terms, we can come up with a type signature for compilers and
interpreters:

(¥ SML text -> assembly language text *)

val compile : string -> string

(# a function which executes some assembly code directly.
* all computers come with this prepackaged. *)

val run : string -> unit

(* execute SML text directly x*)
val interpret string -> unit

In a broad sense, we should have that interpret 2 run o compile. Put simply,
interpreting a program is the same as compiling it first, and then running it.

Brandon Wu Compilers 01 August 2023 13/68

Compilers and Interpreters A

A way to understand interpreters and compilers comes from natural language. For
instance, | am both a compiler and an interpreter.

| am a compiler, because | have a rudimentary understanding of Mandarin Chinese.
This means that when | hear Mandarin, | can translate it into English first, and then
understand the resulting English.

I am also an interpreter, because | natively speak English. When | hear English, |
immediately understand its meaning, without needing to mentally translate it.

Brandon Wu Compilers 01 August 2023 14/68

Circuitous Implementation A

One idea that always is hard to accept is the fact that a programming language can
be implemented in itself.

For instance, PyPy is a Python implementation written in Python. Similarly, the
SML/NJ compiler is written in SML, and the Rust compiler is written in Rust.

Why can this happen?

Let’s use the shorthand of compile g to denote a function of type
string -> string, which takes in code written in the language (lang), and
outputs assembly instructions.

Brandon Wu Compilers 01 August 2023 15/68

Programming Languages as Ideas A

Understand that a programming language originates as just an idea.

Before John Backus actually implemented FORTRAN, he had the idea in his head
that there should be some high-level language that he could program in. He
possibly had the syntax in his head, and called it FORTRAN, but a program written in
FORTRAN couldn’t do anything, because no computer could understand FORTRAN
at the time.

But, luckily enough, we had assembly and punch cards. This meant that it was
already possible to compute — in particular, it was possible to tell a computer how to
do anything, how to compute any computable function.

One such function of interest is the compilerogrrran fUNCtiON, OF in other words, a
FORTRAN compiler. This happens to be a concrete instance of a function which is
computable, so it is possible to use assembly and punch cards to write it.

Brandon Wu Compilers 01 August 2023 16/68

Bootstrapping Compilers A

But, once we now have compilergrrran: it is possible to write FORTRAN code and
actually turn it into machine instructions, and run it.

Therefore, it is possible to write FORTRAN code which computes anything.

In particular, it is still possible to write a function compilefrgrtran, €XCEPL NOW
instead of being written in assembly language, it is written in FORTRAN itself, and
given meaning by the existing FORTRAN compiler.

This is an example of what is called bootstrapping in compiler theory. We can
implement a language in itself, but only so long as there already exists a compiler
which can understand that language.

Brandon Wu Compilers 01 August 2023 17/68

Bootstrapping Compilers A

So, PyPy and SML/NJ and the Rust compiler all work the same way.

Guido van Rossum started with an idea in his head of a language called Python,
with a particular syntax and a particular kind of evaluation model. It didn’t exist yet,
but it was an idea in his head.

Then, he took his language of choice, and then implemented a function
compilepyinon IN it. This was the first Python compiler 4, and made it possible to
write and run Python code.

Once that was done, now we could write any function, including rewriting
compilepyinon, DUt this time in Python. This was then called pypy.

4Actually, Python is an interpreted language, so at this point there wasn't yet a Python "compiler".
But for the sake of the story, interpreters are similar enough.
Brandon Wu Compilers 01 August 2023 18/68

Compilers from 5000 Feet A

Now that we’ve set the stage for what compilers are, and for what they do, we can
talk about the actual implementation of a compiler.

Recall that a compiler, such as compilegy,, is written in some language, and has
type string -> string, where it takes in the text of an SML program and returns
an executable.

A compiler achieves this goal by translating the input program through a series of
intermediate forms, simplifying and optimizing along the way, until finally producing
an assembly program.

Brandon Wu Compilers 01 August 2023 19/68

Compilers and Functional Programming A

A meta question comes to mind, which is — why are we studying compilers in a
course on functional programming?

Even the most dogged, determined hater of functional programming cannot deny
that functional programming is incredibly suited towards writing compilers.

The Killer application for functional programming is in writing compilers, because
compilers are just transformations on data. Functional programming mediates that
relationship by enforcing typed guarantees on that data, as well as offering
fundamental constructs (pattern matching, datatype declarations) that make the
entire process an absolute joy.

For the rest of this presentation, we will assume we are trying to implement a toy
SML compiler in SML.

Brandon Wu Compilers 01 August 2023 20/68

3 - Compiler Implementation

The Lifecycle of a Compiler A

Most all compilers follow the same structure:

* lexing, which takes in a string program, and outputs a token 1list, which
simply groups together fundamental units of the program

e parsing, which takes in a token 1ist, and outputs an abstract syntax tree of
type ast, which is a tree representing the program’s structure

¢ intermediate representation, which turns the abstract syntax tree into
abstract assembly, that breaks apart the high-level constructs into
assembly-like primitives

e optimization, which tries to fine-tune the abstract assembly to be as
performant as possible

* code generation, which involves turning the abstract assembly into real
assembly

Brandon Wu Compilers 01 August 2023 22/68

The Lifecycle of a Compiler: Lexing A
start —————| program text |

lexing

parsing

abstract syntax tree

IR generation

optimization abstract assembly / control-flow graph

codegen

real assembly —— profit!

Brandon Wu Compilers 01 August 2023 23/68

Steps of a Compiler A

lexing

parsing

abstract syntax tree

IR generation

optimization abstract assembly / control-flow graph

codegen

real assembly —— profit!

Brandon Wu Compilers 01 August 2023 24/68

An Example Compilation A

Let’s visually see how we can think about a compiler. We'll start with an example
SML program, of type string.

val x = 2 - 1

fun foo (y : int) =

Brandon Wu Compilers 01 August 2023 25/68

Tokenization Y

We then tokenize the input program, so that instead of thinking of it as a list of
characters, we group together all characters that are part of the same semantic unit.

Linguistically, this is similar to reading sentences as words, instead of as a list of
letters. Let’s highlight all the "words" of this program.

SML is a whitespace-agnostic language, so we don’t actually care about the
whitespace here. It just serves to separate distinct tokens.

Now, let’s turn it into a list of tokens, annotated with each token’s meaning.

Brandon Wu Compilers 01 August 2023 26/68

Tokens as a Datatype Types Guide Structure),

In SML, we could define a type token which simply denotes each "word" of a
program. It might look something like this:

datatype token =
(* data x)
ID of string | NUM of int

(* keywords x*)
| VAL | FUN | TYPE (% ... %)

(x syntax *)
| LPAREN | RPAREN | COLON | EQ | PLUS | MINUS
(x ... %)

Brandon Wu Compilers 01 August 2023 27/68

Tokens, Pictorially Y

So after tokenization into the token type we just defined, we might get something
like this:
val X 2 1

VAL ID NUM NUM

fun foo y int B
FUN ID ID ID NUM ID

Or, written as actual SML code:

[VAL, ID "x", EQ, NUM 2, MINUS, NUM 1]
@ [FUN, ID "foo", LPAREN, ID "y", COLON, ID "int", RPAREN]
@ [EQ, NUM 5, PLUS, ID "x"

Brandon Wu Compilers 01 August 2023 28/68

The Lifecycle of a Compiler: Parsing A
start —>| program text |

lexing

parsing

abstract syntax tree

IR generation

optimization abstract assembly / control-flow graph

codegen

real assembly —— profit!

Brandon Wu Compilers 01 August 2023 29/68

Recursive Problems, Recursive Programs Y

One thing we note before proceeding is the fact that programs are naturally
recursively defined. We can witness this by the fact that all the following are
programs:

if true then big else () I
if true then if true then big else () else () I

if true then if true then if true then big else () else ()
else ()

Brandon Wu Compilers 01 August 2023 30/68

Towards Abstract Syntax

It turns out this makes programs a prime candidate for a recursive datatype
declaration!

By analogy, if you are familiar with the idea of op trees, recall that we can have a
tree corresponding to some arithmetic expression:

This tree happens to denote the expression (1 - 2) + 3.

Brandon Wu Compilers 01 August 2023 31/68

Abstract Syntax is Abstract A

This is just abstract syntax, though, since it elides some of the specific syntactic
details, like the fact that there is a left and right paren around the subtraction.

In the end, this doesn’t matter, because the tree structure serves as a proxy for
what the parentheses were trying to tell us. We thus can get away from the precise
coding details, while preserving the meaning, by using an abstract syntax tree, or
AST for short.

Brandon Wu Compilers 01 August 2023 32/68

Programs are Trees A

Well, we can do something very similar to op trees with programs. We will instead
have an abstract syntax tree which denotes the structure of the program.

This tree denotes the program

val x = (1 - 2) + 3 ValDec

Note how it has no mention of parens or the =
sign, because they don’t actually matter in terms
of what the program means!

Generally, we can get rid of things like colons,
equals signs, keywords, and parentheses in
abstract syntax. These syntactic details only
existed to let us know what the actual underlying
tree looked like.

Brandon Wu Compilers 01 August 2023 33/68

Abstract Syntax Trees

A

So, for our running example program, we could obtain the following abstract syntax

tree:

TopDecs

ValDec

FunDec

TypedPat

80 @

(Int 2) (Int 1)

Brandon Wu

\

int

(Int 5) (Id "=")

Compilers

01 August 2023 34/68

Abstract Syntax as a Datatype Types Guide Structure 7»

The SML code for how we might represent an abstract syntax tree looks similarly to
the C,; problem from your homework. We could write:

datatype exp =
Int of int
| Id of string

| Plus of exp * exp (* el + e2 x)
and declaration =
ValDec of pat * exp (* val <pat> = <exp> *)
| FunDec of string * pat list * exp
(* fun <id> <pl> ... <pn> = <e> %)
Y

and pattern =
IdPat of string
| TuplePat of pattern list (x (pl, p2, ..., pn) *)
| (x ... %)

Brandon Wu Compilers 01 August 2023 35/68

Recursive Descent Parsers Recursive Problems, Recursive Solutions

Usually, an abstract syntax tree can be obtained from a list of tokens via a
straightforward recursive-descent parser.

A recursive-descent parser is one comprised of many mutually recursive
functions, each of which simply is responsible for parsing a single construct (such
as expressions, patterns, declarations) from a list of tokens.

So for instance, we might have a bunch of functions, such as:

A

val parsePat : token list -> pat * token list
val parseExp : token list -> exp * token list

val parseDec : token list -> dec * token list

which parse a tree corresponding to a pattern, expression, or declaration from the
front of a token 1ist, and then return the rest of the token 1ist. This should
feel like the regex matcher!

Brandon Wu Compilers 01 August 2023 36/68

Recursive Descent Parsers 7\,

The SML code for that might look like:

fun parseDec (ts : token list) : dec * token list =
case ts of
(* val <pat> = <exp> *)
VAL::ts2 =>
let

val (pat, ts2) = parsePat ts
val ts3 = expect EQ ts2
val (exp, ts4) = parseExp ts3

in
(ValDec (pat, exp), ts4)
end
| FUN::ts2 => (* ... *)
| TYPE::ts2 => (* ... %)
G ... %)

Brandon Wu Compilers 01 August 2023 37/68

Regions of a Parse Tree A

We can see how it works by going back to our token 1ist from earlier.

Using the parseDec function, we essentially split the token list into regions based
on whether they correspond to patterns or expressions or related:

parseDec (rest of token list)
val X 2 1 fun foo
VAL ID NUM NUM) ID
q ; N g y
parsePat parseExp

Brandon Wu Compilers 01 August 2023 38/68

Regions of a Parse Tree

The highlighted regions then return to us subtrees of certain types, as the return
values of parsePat and parseExp.

Then, parseDec just needs to string them together, and place them under the
constructor ValDec, corresponding to a node of the syntax tree representing a val
declaration.

parsePat — @ parseDec — |ya]lpec

parseExp —

(Int 2) (Int 1) (Int 2) (Int 1)

Brandon Wu Compilers 01 August 2023 39/68

On Implementing Parsing and Lexing A

| have so far been brief on how you implement lexers and parsers.

If you look at the code above for the parseDec function, it is reasonably
boring-looking. The code mostly follows the structure of the program.

Lexing and parsing are generally considered to be "solved" problems, in the field of
computer science, due to decades of advances in lexing and parsing theory. It turns
out that lexers and parsers are so straightforward that many lexers and parser
nowadays are no longer written by humans, but actually autogenerated from a
specification.

So they are generally not super important. | enjoy writing parsers, though. °

5Such generators are called lexer and parser generators. You could also call them lexer compilers
and parser compilers, confusingly.
Brandon Wu Compilers 01 August 2023 40/68

Playing with Program Trees A

Once you have ASTs, everything interesting can happen.

ASTs essentially encode all the essential syntactic structure of a program, while
getting rid of all of the fat that is not strictly necessary to understand what a
program means.

It is at this point we can write transformations and analyses on those ASTs, to
imbue the tree with actual meaning.

Seen in this way, compilation is nothing more than transformation and
operations on trees.

Brandon Wu Compilers 01 August 2023 41/68

Playing with Program Trees Types Guide Structure),

For instance, something very pivotal that occurs soon after you obtain a syntax tree
is that you can type-check a program. The code for that might look like:

datatype ty = IntTy | StringTy | RealTy | (x ... *)

fun typecheck (e : exp) : ty =
case e of
Int _ => IntTy
| Plus (el, e2) =>
(case (typecheck el, typecheck e2) of
(IntTy, IntTy) => IntTy
| (RealTy, RealTy) => RealTy

[=> raise Fail "expected pair of ints or reals"

We see it’s just a straightforward recursive function on a tree.

Brandon Wu Compilers 01 August 2023 42/68

Compiler Optimizations Programmatic Thinking is Mathematical Thinking 7\

Type-checking is just one operation you can perform on an AST.

Another critical part of compilers is compiler optimizations, which is the problem of
turning an AST into a semantically equivalent AST that is simpler in some form.

For instance, consider the sub-tree of However, on inspection, it might as
our running program, corresponding well be:
to the declaration of x:

ValDec

(Int 2) (Int 1)

Brandon Wu Compilers 01 August 2023 43/68

Constant Folding A

This is a classic compiler optimization called constant folding.

Constant folding is a compiler optimization where the AST is simplified to
evaluate any constant arithmetic expressions at compile time, simplifying the AST.

It may seem fairly trivial to simplify expressions like 2 - 1. After all, this takes a
fairly miniscule amount of time at runtime! Just remember:

* Optimizations add up. Being able to simplify an expression might lead to
further simplifications, especially nearer to assembly, when pretty much
everything just becomes arithmetic operations.

* Computers repeat themselves. Computers often run the same routine many,
many times, so small things like less addition operations can lead to a huge
difference, when it's happening billions of times.

* Less operations, less bloat. Less operations lead to smaller file sizes and
faster execution. If | compile the expression 2 - 1, | need to issue multiple
instructions, versus if | just have 1.

Brandon Wu Compilers 01 August 2023 44 /68

Constant Folding A

It can be implemented simply via the following recursive function:

fun cfold (e : exp) : exp =
case e of
Plus (Int i1, Imnt i2) => Int (i1 + i2)
| Minus (Int i1, Int i2) => Int (i1 - i2)
| Div (Int i1, Int i2) => Int (il div i2)

I => e

At least, it would be, if this wasn’t incredibly wrong.

Brandon Wu Compilers 01 August 2023 45/68

Constant Folding? A

This code seems reasonable. If we are trying to fold the constant integer or an
identifier, we can’t do anything, so we return just that expression.

Otherwise, if we are folding an arithmetic operation of some literal integer
arguments, we simplify the tree to that operation’s result. However:

Error 1: This program can crash.

fun cfold (e : exp) : exp =
case e of
Plus (Int i1, Int i2) => Int (il + i2)
| Minus (Int i1, Int i2) => Int (i1 - i2)
| Div (Int i1, Int i2) => Int (il div i2)

| => e

Brandon Wu Compilers 01 August 2023 46/68

Constant Folding, v1 A

Our program will crash upon trying to compile val x = 1 div 0!

Compiling is just a staged version of interpreting code - it is meant to produce
something which can then be run, but a compiler definitely cannot crash or loop
depending on its input program’s behavior. So this is a big no-no in compilers.

We need to fix it like so:

fun cfold (e : exp) : exp =
case e of
Plus (Int i1, Int i2) => Int (i1l + i2)
| Minus (Int i1, Int i2) => Int (i1l - i2)
| Div (Int i1, Int 0) => e
| Div (Int i1, Int i2) => Int (il div i2)
| => e

Brandon Wu Compilers 01 August 2023 47/68

Constant Folding, v2

Error 2: our constant folding function doesn’t recurse!

This means if the expression to be folded is not literally at the top of the expression,
it won’t happen, for instance for the following tree:

(Y @)

(Int 1) (Int 2)

So, let’s fix our code again:

Brandon Wu Compilers 01 August 2023 48/68

Constant Folding A

fun cfold (e : exp) : exp =
case e of
Plus (Int i1, Int i2) => Int (il + i2)
| Minus (Int i1, Int i2) => Int (i1 - i2)
| Div (Int i1, Int 0) => e
| Div (Int i1, Int i2) => Int (i1l div i2)
| Plus (el, e2) => Plus (cfold el, cfold e2)
|
|

Minus (el, e2) => Minus (cfold el, cfold e2)
Div (el, e2) => Div (cfold el, cfold e2)
(* ... many more cases ... *)

Unfortunately, this means we will need a case for every single constructor in the
exp type.®

8There are techniques in functional programming that mean this can actually be written much more
tersely than this, without all the boilerplate.
Brandon Wu Compilers 01 August 2023 49/68

Compile-Time Optimizations A

Constant folding is nice, but in practice usually there’s not a whole lot of
compile-time evaluatable expressions in the actual source of the code.

This would require someone to write something like

val x = 1 + 2 I

in their source code.”

For things like pattern matching, function calls, loops, and complex data structures,
it's difficult to optimize, because these structures are too high-level. For most
optimizations, we need to descend closer to assembly language.

’Which happens, and sometimes by some of you, but not often.
Brandon Wu Compilers 01 August 2023 50/68

The Lifecycle of a Compiler: IR Generation

start 4>| program text |

lexing

parsing

abstract syntax tree

IR generation

codegen

real assembly ——— profit!

Brandon Wu Compilers 01 August 2023 51/68

Assembly, but Abstract Y

For this purpose, we have abstract assembly, which is a kind of primitive code that
looks like assembly language, but doesn’t need to touch things like registers.

Such instructions break apart the nested structure of programs to achieve a very
simple layout. For instance, here’s how we might translate the following function: 8

def f (x, y, z):
return x + (y + z)

tl <- y + z (* a temp variable x*)
t2 <- x + t1 (* another temp *)
ret t2 (* return the result x*)

Here, we do operations on step at a time — no nesting.

81t's actually quite difficult to compile SML, for a number of reasons that have to do with the nice
things we have enjoyed so far in this course. For the rest of the lecture, we will assume a
pseudo-Python language, which is easier to explain.
Brandon Wu Compilers 01 August 2023 52/68

Code Without Brakes Y

This is fine for what is known as straight-line code, which is code that doesn’t
perform any branches of control flow, or jumps in program logic.

Unfortunately, both of these things are quite common in programming languages.
To that end, we translate abstract syntax into a control-flow graph, or CFGs, which
links blocks of straight-line code (called basic blocks) by pointers which denote
which blocks can reach each other.

def f(x):
if x:
return f(x)
else:
return f(not x)

X = true
f(x)

<
I

Brandon Wu Compilers 01 August 2023 53/68

A Controlled Flow Example A

x <- true
y <- call f x

cmp argi1® —/
\»'tl <- not argl

ret call £ ti

8When | write cmp, in reality it's quite a bit more complicated. There’s logic to handle certain kinds
of comparisons, which thing you should jump to... just let the picture guide you. We can elide those
and just assume we pick the right edge.
Brandon Wu Compilers 01 August 2023 54/68

A Cyclic Graph A

But, what’s something that we notice about this CFG?
No matter which way we go, we always end up at a call to £!

X <- true
y <- call f x

fr-ret (call £ argl)

cmp argl-——///}
\»}tl <- not argl

ret call f ti1

In other words, a surefire infinite loop.

Brandon Wu Compilers 01 August 2023 55/68

An Unoptimal Example

A

Control-flow graphs also make it apparent when optimizations cannot be done! For
instance, consider the following program:

def f(x, num):
res = 0
while (res < num):
if res \% 2 == 0:
res += 1
else:
res += (20 * num)
return res

Brandon Wu

Compilers

res = 0

cmp res num

ret res

l

tl <- res % 2
cmp t2 0

res <- res +

1

tl <- 20 * num
res <- res + ti1

01 August 2023 56/68

Unoptimization A

What can we say about our ability to optimize out the computation of 20 * num?

def f(x, num):
res = 0
while (res < num):
if res \% 2 == 0:
res += 1
else:
res += (20 * num)
return res

Brandon Wu Compilers 01 August 2023 57/68

Unoptimization, v1 A

We could try to insert it out of the function, but now we don’t have access to the
num Vvariable.

temp = 20 * num

def f(x, num):
res = 0
while (res < num):
if res \%h 2 == 0:
res += 1
else:
res += temp
return res

Brandon Wu Compilers 01 August 2023 58/68

Unoptimization, v2 Y

We could try to put it outside of the loop, but it's possible we always enter the
highlighted true case, and thus now we have made the program slower.

Statically, we have no idea whether we enter the true or false case, because we
don’t have the input values to the function.

def f(x, num):
res = 0
temp = 20 * num
while (res < num):
if res \% 2 == 0:
res += 1
else:

res += temp
return res

Brandon Wu Compilers 01 August 2023 59/68

Unoptimization, v3 A

Even if we had a good guarantee that we enter the true case enough for it to be
worth the optimization, what if instead of computing 20 * num, it was
20 div num?

Then, we introduce additional unsafe behavior!

def f(x, num):
res = 0
temp = 20 div num
while (res < num):
if res \% 2 == 0:
res += 1
else:

res += temp
return res

Brandon Wu Compilers 01 August 2023 60/68

Safe Optimizations Programmatic Thinking is Mathematical Thinking)\,

Compiler optimization is an interesting field because we have to try very hard to
preserve an equivalent program, and we can only do that if we do quite a bit of
thinking to find the cases where this optimization is safe — in essence, that it will not
change the behavior of the program.

Ol aVel e[S ENplellplel |s it true that you can optimize forward 20 * num if
that expression appears on all boxes onward?

In practice, this desugars to the content of our next lecture, program analysis, and
involves a technique known as dataflow analysis, which guarantee that we can
obtain that information in finite time.

Brandon Wu Compilers 01 August 2023 61/68

Assembly Optimizations A

With CFGs, you can do easy optimizations, because the flow of the program is very
apparent. This leads us to a whole host of possible optimizations, the list of which is
far too comprehensive to go over here.

The basic idea is that these are two main kinds of optimizations:

Local optimizations are optimizations which run purely within a single basic
block of straight-line code.
Some examples of these include constant folding and copy propagation.

Global optimizations are optimizations which run interprocedurally, that is, by
considering the flow of data through multiple basic blocks or functions.

Some examples of these include dead code elimination, unused variables, and
function inlining.

Brandon Wu Compilers 01 August 2023 62/68

The Lifecycle of a Compiler: Code Generation

start —>| program text |

lexing

parsing

abstract syntax tree

IR generation

codegen

real assembly ——— profit!

Brandon Wu Compilers 01 August 2023 63/68

Generating Assembly A

Once the control flow graph has been simplified to satisfaction, we can then move
on to the step of generating actual assembly instructions from the abstract
assembly.

The primary difference is that the abstract assembly assumes that you can move
values to and from an infinite array of temporary variables.

Unfortunately, actual computers exist in the real world, and do not have an infinite
amount of places you can put data. This isn’'t a big deal always, though, because we
don’t need to keep all data around forever.

This means that essentially, a compiler must have future sight, and perfectly plan
out everywhere that it puts its data during the program’s run. This problem is called
register allocation, and is far beyond the scope of this course, and my ability to
explain right now.

Brandon Wu Compilers 01 August 2023 64/68

An Analogy for Register Allocation A

Consider the following analogy.
| am really popular. | have lots of friends.®

Unfortunately most of them hate each other and | only have 8 seats at my birthday
party, which is happening at Chuck E. Cheese’s."°

| want as many of them to come, but they are all only available at certain times,
and they’ll be cranky if they can’t be there for the full time they’re available.

How can | plan a precise schedule with the time that each friend is allowed to come,
to maximize their (and my) happiness?

®Haters will say | wrote this analogy purely so | could put this into my slides.

"®Where a kid can be a kid.
Brandon Wu Compilers 01 August 2023 65/68

Arriving at Executables A

Then, finally, real assembly is generated from the abstract assembly, and the
executable is fit to run. The story is over.

This is the bird’s eye view of a compiler. There are many facets to each phase that
were not elaborated upon, but in terms of the intuition behind what a compiler is
and does, this should suffice.

The key thing to realize here is that at the end of the day, compilers are not magic!

Brandon Wu Compilers 01 August 2023 66/68

Functional Programming and Compilers A

Functional programming ultimately fits compilers well for a few reasons:

* Compilers are fancy tree transformations. Functional languages are very good
at dealing with recursively defined structures which look like trees.

* Compilers cannot be wrong. If you compile your code, and the resulting code
does not do what it should, this is the doomsday scenario. If we cannot trust
the compilers we use, then there is no hope for programming. Functional
programming is safer in general, leading to less silly mistakes and unsafe
behavior.

* Compilers are pure. When translating a compiler from one stage to another, we
generally expect deterministic results. Thus, no mutability needed.

Brandon Wu Compilers 01 August 2023 67/68

Thank youl!

	The History of Programming Languages
	Compiler Theory
	Compiler Implementation
	presentColorLexing
	presentColorParsing
	presentColorIR Generation
	presentColorCode Generation

