


Lesson Plan

1 Asymptotic Complexity

2 Work and Recurrences

3 Parallelism and Span

Brandon Wu Asymptotic Analysis 01 June 2023 2 / 59



Last time

Last time, we learned about trees, which are a particular instance of datatype
declarations.

We saw how we could represent trees via the Empty and Node constructors, as well
as how to do proof by structural induction on a tree.

We then saw how we could use datatype declarations more generally, to define
types and values that fit the problem we are trying to solve. We used it to define an
order datatype, for comparing two integers.

Brandon Wu Asymptotic Analysis 01 June 2023 3 / 59



1 - Asymptotic Complexity



Where we are so far

So far, we’ve been concerned with exploring the expressivity of the Standard ML
language.

We’ve learned how we can use fundamental language concepts like pattern
matching, datatype declarations, and recursion to both state and solve various
problems in computer science.

On the first day, functional programming was first explained as a kind of better way
of communicating, as programmers. This is not the only thing we care about,
however! We also care about how well our code performs.

Brandon Wu Asymptotic Analysis 01 June 2023 5 / 59



Performance in Computer Science

Performance can be difficult to measure, however, because it’s not a very
standardized process! Performance can vary from program to program, of course,
but also from computer to computer, depending on the hardware.

Even worse is that even on the same computer, performance can vary from run to
run, due to factors in the computer such as its current CPU load, the amount of
power it has, and other low-level factors.

We want to be able to analyze performance mathematically, in a way that is
agnostic to these silly details.

Brandon Wu Asymptotic Analysis 01 June 2023 6 / 59



Big-O Notation Programmatic Thinking is Mathematical Thinking

We also observe that as time goes on, the amount of data that computers are asked
to deal with has gone up significantly. Gone are the days of punching data into
cards, now we store petabytes of data in the cloud.

As such, we want to measure performance in a way agnostic to silly hardware
details, but still sensitive to mathematical differences in how an algorithm runs.

Def We use Big-O notation to describe the behavior of a function, in the limit of
the size of its input. This function usually denotes the computational cost of a
program.

Brandon Wu Asymptotic Analysis 01 June 2023 7 / 59



Big-O, Formally

Formally, we take a function f : N+ → N+, which in our case describes the abstract
cost of running some program.

The input is some metric of the data input (the length of a list, the size of a number)
and the output is the number of abstract units that it costs to run on that input.

For another function g : N+ → N+, we say that f ∈ O(g) if there exists n0, c > 0 such
that, for all n ≥ n0, f(n) ≤ cg(n).

Brandon Wu Asymptotic Analysis 01 June 2023 8 / 59



I Don’t Speak Math

OK, that’s a lot to digest. What does it really mean?

All this is describing is that a function f (the run-time function) is in O(g), such as
O(n2) or O(n) (the complexity class), if there exists a a point beyond which the
run-time function is always less than the complexity class function (scaled by a
constant factor).

We need the constant factor for cases such as f(n) = 2n and g(n) = n, where there
is no value such that f(n) ≤ g(n). Despite that, however, the former function is still a
linear function, so we should be able to scale g by a constant factor (say, 2.5) and
conclude f ∈ O(g).

Brandon Wu Asymptotic Analysis 01 June 2023 9 / 59



I Don’t Speak Math

This is why n and n0 are important:

f is always less than g. f is not always less than g

Brandon Wu Asymptotic Analysis 01 June 2023 10 / 59



I Don’t Speak Math

This is why c is important:

f is greater than g but not when g is scaled by 3

Brandon Wu Asymptotic Analysis 01 June 2023 11 / 59



The Asymptotic Hierarchy

In general, in this class, time complexity will fall into a few common buckets, and not
really venture outside of them.

It is important to know how these complexity classes are related!

O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < ...

In general, we will only see complexity up until O(n2).

It is worth noting that the ∈ relation for asymptotic complexity is more permissive
than we need! If we have f ∈ O(n), then it is also true that f ∈ O(n log n), and
f ∈ O(n2), and so on.

We want to find the least complexity class that captures this relation. This is called
a tight asymptotic bound.

Brandon Wu Asymptotic Analysis 01 June 2023 12 / 59



Asymptotic Complexity at a Glance

Here are some examples of common operations that fall into these buckets:

• O(1) - Consing an element onto a list, multiplying two numbers, stepping an
expression once

• O(log n) - Binary searching an interval n wide, finding an element in a binary
search tree

• O(n) - Computing the length of a list, finding the last element of a list, summing
the nodes of a tree

• O(n log n) - Mergesort and quicksort
• O(n2) - Insertion sort, selection sort

Brandon Wu Asymptotic Analysis 01 June 2023 13 / 59



Implicit Functions

Note that, when computing asymptotic complexity, there is always an underlying
function f that we are approximating the behavior of. This function always takes in
some number that denotes the "size of the input".

In the case of numbers, this is just the number itself.

In the case of something like "computing the length of the list", this is the length of
the list. In the case of trees, this could be the number of nodes in the tree.

It’s important to realize that, although we usually arecasual and don’t specify things
explicitly, these underlying size metrics are still there! We will be explicit about it
going forward.

Brandon Wu Asymptotic Analysis 01 June 2023 14 / 59



2 - Work and Recurrences



Applied Big-O

Big-O notation is useful conceptually, but not very useful if we can’t reliably come to
define the function f that we would like to find the bound of!

Casually, we might skip the function f and just go straight to the bound, by
estimating the amount of times that work is done. For instance, for the following
function:

fun length ([] : int list) : int = 0
| length (x::xs) = 1 + length xs

without even thinking, we might say that it is O(n), because we iterate over the
entire list.

This is an informal way of thinking, however! One of the strengths of functional
programming is that we will be able to give this analysis a more rigorous treatment.

Brandon Wu Asymptotic Analysis 01 June 2023 16 / 59



Recurrences

To do this, we will specify a recurrence relation for each function that we wish to
analyze.

Def A recurrence relation is a series of mathematical equations that specifies the
run-time cost of a recursive function, defined in terms of itself.

We then solve the recurrence relation to obtain a function that describes the work
of the function, in some size metric, and then place it in a complexity class.

Def The work of a function is its run-time cost.

Brandon Wu Asymptotic Analysis 01 June 2023 17 / 59



Formulating the Recurrence

Let’s take the fact function, as a starter.

fun fact (0 : int) : int = 1
| fact n = n * fact (n - 1)

We obtain the recurrence by analyzing the work done in each case. We obtain two
equations, for the two cases of the function:

Wfact(0)
1 = c0

Wfact(n) = c1 +Wfact(n− 1)

1Wfact(0), for "work of fact on input size 0"
Brandon Wu Asymptotic Analysis 01 June 2023 18 / 59



Understanding the Recurrence

Wfact(0) = c0

Wfact(n) = Wfact(n− 1) + c1

In the first case, we return an unspecified constant c0. Work is measured in arbitrary
abstract units, and we don’t necessarily know how many of those are taken up by
returning 1. It’s nonzero, because there is some amount of work that needs to be
done, but it’s otherwise unknown, so we use a placeholder constant c0.

In the second case, we do some constant amount of work, again. It’s not necessarily
the exact same as the previous case, so we just call it c1. We also do the work of
computing fact on an input that is 1 smaller.

Brandon Wu Asymptotic Analysis 01 June 2023 19 / 59



Solving the Recurrence

Now that we have the recurrence, we can go ahead and try to solve. We will use a
technique called unrolling.
Def The unrolling method for solving recurrences entails just expanding the
definition of the recurrence, finding a pattern, and then writing a closed form.
So we obtain, when n is the size of the number n in the expression fact n:

Wfact(n) = Wfact(n− 1) + c1

= Wfact(n− 2) + c1 + c1

= ...

=

n∑
i=0

c1 + c0

= n · c1 + c0

Brandon Wu Asymptotic Analysis 01 June 2023 20 / 59



Note on Formality

When using the unrolling method, we’re not being super strict, but the idea is just to
demonstrate that you know that there is a pattern, and that the recurrence
definitely will expand to the given closed form!

We are not going to be super picky, but it matters that we can follow along with your
reasoning.

Brandon Wu Asymptotic Analysis 01 June 2023 21 / 59



Solving the Recurrence

Finally, once we have a closed form, this is essentially our function f . We now want
to find a complexity class for it.

If you followed all the steps correctly, it should be fairly obvious what is a tight
bound for it. For instance, for the closed form

Wfact(n) = n · c1 + c0

we can clearly tell that it is in O(n), because it is a linear function in n.

Brandon Wu Asymptotic Analysis 01 June 2023 22 / 59



A Worst-Case Example

Consider the following artificial SML function:
fun findFirstEven ([] : int list) : int option = NONE

| findFirstEven (x::xs) =
if x mod 2 = 0 then

SOME x
else

findEven xs

This function, findFirstEven , seeks to find the first even number in an SML list of
integers. Since there might not be such a number, it returns an optional value.

How might we write a recurrence for this function?

Brandon Wu Asymptotic Analysis 01 June 2023 23 / 59



A Worst-Case Recurrence

First, we need to identify the parameter for our recurrence. What number is our
recurrence measured in terms of?

For lists, we’ll choose to pick the length of the list. It’s the most obvious metric.

For the base case, it’s fairly simple. We do a constant amount of work, so we
produce:

WfindFirstEven (0) = c0

What about the recursive case? Well, the recursive case is actually two cases.

Brandon Wu Asymptotic Analysis 01 June 2023 24 / 59



A Worst-Case Recurrence

Asymptotic complexity is measured in terms of worst-case behavior.
This means that, across the entire range of inputs that the function could be given,
we are interested in measuring the complexity when the function is given an input
that causes the most work for it to do.
While findFirstEven , in the recursive case, could terminate immediately upon
looking at the first number, to be truly pessimistic we will assume that there is no
such even number in the list, which will cause us to always enter back into the
recursive case.
When n is the length of L in the expression findFirstEven L:

WfindFirstEven (n) = WfindFirstEven (n− 1) + c1

because we call the function again on a list of length one smaller, and do a constant
amount of work.

Brandon Wu Asymptotic Analysis 01 June 2023 25 / 59



The Recurrence Formula

Now that we’ve done a few examples, we’re ready to identify the general formula for
analyzing the asymptotic complexity of a function:

Given an SML function f that we seek to find the complexity of, we should:
• Identify the size parameter, n, that the recurrence is in terms of. This could be

something like the length of a list, the size of the number, etc.
• Write a recurrence for the function. This entails writing an equation for every

case it takes, in the worst case.
• Simplify the recurrence into a closed form in n.
• Estimate a complexity class from the recurrence

Brandon Wu Asymptotic Analysis 01 June 2023 26 / 59



A Blast from the Past

Remember the rev function?

fun rev ([] : int list) : int list = []
| rev (x::xs) = rev xs @ [x]

Well, this is them now:2

fun trev ([] : int list , acc : int list) = acc
| trev (x::xs , acc) = trev (xs, x::acc)

fun rev (L : int list) : int list = trev (L, [])

We said that our original implementation of rev was undesirable because it wasn’t
tail recursive.
Not only does that matter for how much space it takes, but how much time as well!
Let’s write the recurrence.

2Feel old yet?
Brandon Wu Asymptotic Analysis 01 June 2023 27 / 59



A Blast from the Past

fun @ ([] : int list , ys : int list) : int list = ys
| @ (x::xs, ys) = x :: (xs @ ys)

fun rev ([] : int list) : int list = []
| rev (x::xs) = rev xs @ [x]

But, we see that rev actually depends on @.

We need to first write a recurrence for @, before we can tackle rev.

Brandon Wu Asymptotic Analysis 01 June 2023 28 / 59



Don’t @ Me

But, how should we write a recurrence for @? It has two arguments! Our recurrences
only take in a single size parameter.
We will just identify a single parameter that it makes sense to measure the size of
the input in. We mentioned before that @ only ever looks at the left list, so we’ll only
measure our work in terms of the length of the left list.
Where n is the length of L, when calling L @ R:

W@(0) = c0

W@(n) = W@(n) + c1

We can write out the work as before, but we know that this will go to the closed form

n · c1 + c0

which is in O(n).
Brandon Wu Asymptotic Analysis 01 June 2023 29 / 59



Onto rev

Now we write the recurrence for rev:
fun rev ([] : int list) : int list = []

| rev (x::xs) = rev xs @ [x]

Where n is the length of L, in the expression rev L:

Wrev(0) = c0

Wrev(n) = Wrev(n− 1)+???

We make a call to rev, which has work Wrev(n− 1). But what about after? We call @,
but how big is the length of the list?
Fortunately, we know that the length of rev xs is the same as the length of xs, so
we can write:

Wrev(n) = Wrev(n− 1) +W@(n− 1) + c1
3

3Don’t forget this c1. There is still a constant amount of work being done here.
Brandon Wu Asymptotic Analysis 01 June 2023 30 / 59



Solving rev

Wrev(0) = c0

Wrev(n) = Wrev(n− 1) +W@(n− 1) + c1

Now to solve the recurrence, we get:

= Wrev(n)

= Wrev(n− 1) +W@(n− 1) + c1

= Wrev(n− 1) + c2 · (n− 1) + c1

= Wrev(n− 2) +W@(n− 2) + c1 + c2 · (n− 1) + c1

= Wrev(n− 2) + c2 · (n− 2) + c1 + c2 · (n− 1) + c1

Brandon Wu Asymptotic Analysis 01 June 2023 31 / 59



Solving rev

= Wrev(n− 2) + c2 · (n− 2) + c1 + c2 · (n− 1) + c1

= ...

=

n∑
i=0

c2 · (n− i) + n · c1 + c0

The first term follows from adding a c2 · (n− i) at the ith step of the expansion.
The second follows from adding a c1 per step of the expansion.
The final term comes from the base case.
We apply a handy math fact, which is that∑n

i=0(n− i) =
∑n

i=0 i = 1 + 2 + ...+ n = n(n+1)
2 , which is upper bounded by n2. So:

= O(n2) · c2 + n · c1 + c0 ∈ O(n2)

rev is quadratic time, which is really bad!
Brandon Wu Asymptotic Analysis 01 June 2023 32 / 59



A rev-trospection

In hindsight, we could have predicted this. The recursive case of rev essentially
appends the prefix of the list over and over again, recursively.

But with a recurrence, we now have a mathematical justification for our asymptotic
analysis. We know for sure that the rev function is quadratic time. What will we do
about it?

Well, let’s analyze trev . How much better does it do?

Brandon Wu Asymptotic Analysis 01 June 2023 33 / 59



A trev-elevation

fun trev ([] : int list , acc : int list) = acc
| trev (x::xs , acc) = trev (xs, x::acc)

To analyze trev, we note that the right list is never touched, so we will again
measure in terms of the length of the first list.

Where n is the length of L in the expression trev (L, acc):

Wtrev(0) = c0

Wtrev(n) = Wtrev(n− 1) + c1

We know what this solves to. We get a happy bound of O(n).

Brandon Wu Asymptotic Analysis 01 June 2023 34 / 59



Some Takeaways Programmatic Thinking is Mathematical Thinking

We just demonstrated how we can use math and recurrences to formally reason
about the run-time of functional programs.

This came out of the fact that due to purity, functions always behave the same on
the same arguments. We can define our W function and know that it is truly a
function, and returns the same results on the same inputs.

In addition, due to the recursive nature of the functions we wrote, the recurrences
came naturally. It only took two cases to specify the run-time of the function, for
most of our analyses, and solving it was just math.

Functional programs help us reason about our code!

Brandon Wu Asymptotic Analysis 01 June 2023 35 / 59



Any questions?
Ask anonymously: menti.com with code 5840 8607



3 - Parallelism and Span



My Heart is in the Work

Earlier this lecture, we explored the idea of work, which is the run-time cost of a
particular function, varied over the size of its input. We saw that we could measure
work in terms of abstract units, related to the number of steps that we took to
evaluate an expression, in our model of SML. For instance:
(1 + 2) + (3 + 4) =⇒ 3 + (3 + 4) =⇒ 3 + 7 =⇒ 10

We don’t know how much cost a single step is, but we might say that it takes 3
steps to evaluate, by the above trace.

But this doesn’t always need to be true.

Brandon Wu Asymptotic Analysis 01 June 2023 38 / 59



Real World Computation

Let’s have a race!

In lecture, we’re going to have one person count the number of people in the room.

I will race them to see who can count the number of people in the room first.

Let’s see who wins.

Brandon Wu Asymptotic Analysis 01 June 2023 39 / 59



Real World Parallelism

Counting is a problem that can make use of parallelism.

Def Parallelism is when a process is able to execute some of its tasks at the same
time.

Usually, this happens at the hardware level on a multicore machine, by the
processor being able to delegate distinct instructions to be performed on different
"cores", which can communicate answers with each other.

We will safely ignore most of that, and just assume that multicore machines exist,
though.

It’s hard to pick a number for how many, however. So let’s just assume we have
infinitely many.

Brandon Wu Asymptotic Analysis 01 June 2023 40 / 59



To Infinity...

Having infinite cores sounds like a superpower that should elevate us to
computational deities. Infinite cores? Infinite power!

It’s not quite the case, though.

Consider the problem of making a sandwich.

Brandon Wu Asymptotic Analysis 01 June 2023 41 / 59



Sandwich Complexity

If there were an infinite amount of me, I might want infinitely many sandwiches.

But, I can’t just instantly make a sandwich, even if I had more hands available. I have
to toast the bread, which means I need to wait for the pan to heat up, and I can’t
toast the bread, because I need to slice it from the loaf, and I can’t slice it from the
loaf, because there’s only two sides and maybe another version of me wants to slice
it first.

Note Making a sandwich is hard.

This is the notion of task dependency in parallel computing.

Def When computing in parallel, some tasks have dependencies, meaning they
cannot be completed until other tasks are finished.

Brandon Wu Asymptotic Analysis 01 June 2023 42 / 59



Sandwich Dependency Graph

slicing bread heating pan getting slices of ham getting slices of cheese

toasting bread in pan

assembling sandwich

Question: How long does it take to make a sandwich?

Answer: The length of the longest path.

Brandon Wu Asymptotic Analysis 01 June 2023 43 / 59



Task Dependency Graph

This demonstrates the notion of a task dependency graph.

Def A task dependency graph is an acyclic graph which shows the relationship
between tasks and their dependencies. The nodes are tasks, annotated with time
to complete, and the edges go from tasks that are preconditions to other tasks.

In a task dependency graph, with only a single processor, we cannot avoid having to
visit every single node. It doesn’t really matter what order we do it in, but we have
to pay cost equal to the sum of all the nodes.

With infinitely many processors, because we can start unrelated tasks at the same
time, the amount of time spent is just the length of the longest dependency chain in
the graph. In essence, the height of the graph.

Brandon Wu Asymptotic Analysis 01 June 2023 44 / 59



Circling Back Around

In terms of concrete vocabulary, this demonstrates the difference between work
and span.

Def We say that the work of a process is the time expended using a single
processor.

Def We say that the span of a process is the time expended using infinitely many
processors.

We said earlier that in SML, tuples are evaluated left to right. In a world with
infinitely many processors, we will assume that elements of a tuple can be
computed at the same time.

We wrote recurrences labeled with W earlier – W , for work. Now, we will write
recurrences for span.

Brandon Wu Asymptotic Analysis 01 June 2023 45 / 59



A Span Recurrence

Let’s compute the span of the length function. The process will look very similar,
but we will assume that any tuples are evaluated in parallel.
Note This is a general rule going forward! Whenever you see a tuple, when we are
doing span computations, you may assume that the elements of the tuple are being
evaluated in parallel. This is only for tuples.

fun length ([] : int list) : int = 0
| length (x::xs) = 1 + length xs

Where n is the length of the list L in the expression length L:

Slength(0) = c0

Slength(n) = max(c1, Slength(n− 1)) + c2

Brandon Wu Asymptotic Analysis 01 June 2023 46 / 59



A Span Recurrence

Then we have:

Slength(n) = max(c1, Slength(n− 1)) + c2

= Slength(n− 1) + c2

= ...

= O(n)

What gives?

Brandon Wu Asymptotic Analysis 01 June 2023 47 / 59



A span-ner In The works

We got the same bound, even though we had infinitely many processors!

This is because lists are inherently a sequential structure. Even if you had many
processors, you can’t touch the second list element until you look at the first. In
essence, every list has a single "child", if we view xs as the child to x::xs.

What’s a data structure that has more than one child?

Brandon Wu Asymptotic Analysis 01 June 2023 48 / 59



Span and Trees

Let’s analyze the span of a function on trees!

fun treesum (Empty : tree) : int = 0
| treesum (Node (L, x, R)) = treesum L + x + treesum R

We need a metric for the size of the tree, though. There’s actually two options – the
number of nodes in the tree, or the height of the tree.

Brandon Wu Asymptotic Analysis 01 June 2023 49 / 59



Tree Recurrence: Nodes

Both are valid ways to go about it. Let’s try it first by using n, the number of nodes in
the tree.

fun treesum (Empty : tree) : int = 0
| treesum (Node (L, x, R)) = treesum L + x + treesum R

Where n is the number of nodes in T, in the expression treesum T:

Streesum(0) = c0

Streesum(n) =???

What should we put for the recursive case? Because of infinite processors, we can
consider the calls to treesum L and treesum R to all be executed in parallel. But
what is the number of nodes in each?

Brandon Wu Asymptotic Analysis 01 June 2023 50 / 59



Tree Recurrence: Unbalanced Tree

For an arbitrary tree, we can’t possibly know the number of nodes in the left and
right tree. This is where worst-case analysis will save us.

To simplify our analysis, we will simply pick the configuration that is the worst for
us. The worst case for treesum is when the input tree is a "spine", or a straight line.
Thus, we will assume the number of nodes in the left is n− 1, and in the right, 0.

So we obtain:

Streesum(n) = max(Streesum(n− 1), Streesum(0)) + c1

Streesum(n) = Streesum(n− 1) + c1

where the constant work is again the residual work of addition and retrieving the
other results.

Brandon Wu Asymptotic Analysis 01 June 2023 51 / 59



Tree Recurrence: Unbalanced Tree

Streesum(0) = c0

Streesum(n) = Streesum(n− 1) + c1

Wait a second, we’ve seen this before. If we swap the S for W , this is the same
recurrence as we’ve been getting the whole time!

We know this is in O(n).

Brandon Wu Asymptotic Analysis 01 June 2023 52 / 59



Unbalanced Means Overpowered

We see that our span bound on an unbalanced tree is still O(n)! Even with infinite
processors, we can’t do better than linear complexity.

This kind of makes sense, because a tree that is just a single line is basically a list
with extra metadata. treesum isn’t doing much more than length , so we get a
similar span bound!

Brandon Wu Asymptotic Analysis 01 June 2023 53 / 59



Two Tree Cases

The main two cases we will be concerned about, for binary trees, will be the
unbalanced and balanced cases.

1

2

3

4

An unbalanced tree, or "spine"

8

4

2

1 3

6

5 7

15

10

9 11

13

12 14

A balanced tree, or "complete tree"

The unbalanced tree is almost always the worst input for a given tree function.

Brandon Wu Asymptotic Analysis 01 June 2023 54 / 59



Tree Recurrence: Balanced Tree

Let’s assume that the tree is balanced.

The base case is as before.

In this case, we can assume that each call to treesum is on a tree with roughly half
the nodes as the input. For simplicity, let’s assume we have a tree with n = 2k, for
some k.

Then, we get:

Streesum(n) = max(Streesum(
n

2
), Streesum(

n

2
)) + c1

Streesum(n) = Streesum(
n

2
) + c1

Brandon Wu Asymptotic Analysis 01 June 2023 55 / 59



Tree Recurrence: Balanced Tree

= Streesum(n)

= Streesum(
n

2
) + c1

= Streesum(
n

4
) + c1 + c1

= Streesum(
n

8
) + c1 + c1

= ...

= log n · c1

because the number of times we can divide n by 2 is exactly the logarithm of n,
base 2.
So this is in O(log n).

Brandon Wu Asymptotic Analysis 01 June 2023 56 / 59



The Power of Span

Finally, we obtain a better bound! On balanced trees, we can parallelize more work,
so we are able to run treesum in only log time, as opposed to linear. That’s a big
difference!

We will see that parallelism is a powerful tool that will help us achieve better bounds
in a variety of situations. This is only the tip of the iceberg.

Brandon Wu Asymptotic Analysis 01 June 2023 57 / 59



A Note on Realism

One point that needs to be said before the end of lecture: yes, having infinite
processors is impossible4.

This doesn’t cheapen the findings we discussed. We’re dealing with mathematical
abstractions, and being able to assume as many processors as needed is one of
them.

In reality, performance is somewhere between the work and the span, but the span
remains a useful mathematical ideal.

4I knew this the whole time!!!!
Brandon Wu Asymptotic Analysis 01 June 2023 58 / 59



Thank you!


	Asymptotic Complexity
	Work and Recurrences
	Parallelism and Span

